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Introduction

Strain release amination
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Introduction

a) amination of [1.1.1]propellane
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b) amination of azabicyclo[1.1.0]buanes
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Baran, P. S. et al. Science 2016, 351, 241.
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Carbopalladation
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Aggarwal, V. K. et al. Nat. Chem. 2019, 11, 117.
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Radical addition
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Aggarwal, V. K. et al. J. Am. Chem. Soc. 2019, 141, 9511.
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Radical addition
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Nucleophilic addition
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Gryko, D. et al. J. Am. Chem. Soc. 2020, 142, 5355.
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Cycloisomerization

[Rh(=),Cl],, PhsP, PhMe, 110 °C  Ts—N
r
Ar)\g or [Rh(CO),Cl],, dppe, PhMe, 110 °C A
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TM1 67% vyield TM2 87% vyield
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Wipf, P. et al. J. Am. Chem. Soc. 2008, 130, 6924.
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Project Synopsis

<I> v Strain-release Protocol
KIA[1,1,0] T ki v C-H Activation

bicyclo[1.1.0]buanes ¥ Three-component Reaction
(BCBs)

This work
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.~ CO,E
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Optimization of Reaction Conditions

N~ [Cp*Rh(II)] (5 mol%)
| CO,Bn O additive (30 mol%)
+ + t :
©)\ CO,Et solvent (0.1 M) z
T,16 h 7 “CO,Et
dr >20:1 k
1a (1.0 equiv) 2a (1.0 equiv) 3 (2.0 equiv)
Entry2 Solvent Additive T (°C) Yield (%)
1 TFE CsOAc 60 60
DCE CsOAc 60 traces

3 1,4-dioxane CsOAc 60 -

4 HFIP CsOAc 60 8

5 TFE CsOAc rt 9

6 TFE CsOAc 40 40

7 TFE CsOAc 80 47

8 TFE Na,CO4 60 28

9 TFE KOAC 60 55
10 TFE NaOAc 60 49
11 TFE K;PO, 60 30
12b TFE CsOAc 60 82

aReactions were performed on a 0.10 mmol scale with [Cp*Rh(CH;CN),](SbF;), as the catalyst. 2.0 equiv of 2a.
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Substrate Scope

yOMe  Q CsOAc (30 mol%)
[Cp*Rh(CH3CN)3](SbF), (5 mol%

| OBn ?
+ + k
@ CO,Et TFE (0.1 M), 60 °C, 16 h

dr >20:1

~

Y

1 (1.0 equiv) 2 (2.0 equiv) 3 (2.0 equiv)

Cl
Bn02C

4ca, 66% 4da, 69%

BnO,C

4aa, 74%

-~ CO,Et
BnO,C *

TfO

4ha, 80%

-~ SCO,Et BocHN CO,Et

BnO,C *

BnO,C *

4ia, 57% 4ja, 62% 4ka, 62% 4la, 76%
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Substrate Scope

oM § CsOAc (30 mol%)
I OBn E [Cp*Rh(CH3CN)3](SbFs), (5 mol%)
+ + >
@ CO,Et TFE (0.1 M), 60 °C, 16 h
dr >20:1

1 (1.0 equiv) 2 (2.0 equiv) 3 (2.0 equiv)

NC -~ CO,Et
BnO,C * BnO,C * BnO,C *

4na, 62% 40a, 69% 4pa, 53%

.~ CO,Et
BnO,C *

4ta, 81%

MeS CO,Et

BnO,C BnO,C * BnO,C
4ua, 44% 4va, 64% 4wa, 63% 4xa, 72%
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Substrate Scope

- OMe CsOAc (30 mol%)
| R @ [Cp*Rh(CH5CN)3](SbFg), (5 mol%)

" +L

1 (1.0 equiv) 2 (2.0 equiv) 3 (2.0 equiv)

CO,Et TFE (0.1 M), 60 °C, 16 h
dr >20:1

CO,Et

EtO,C * BUO,C *

4ab, 72% 4ac, 69% 4ad, 51%
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B-Lactone Formation

Pd/C, H,

EtOH/EtOAc (5:1), 40 °C H

HO,C *
5 77% yield

DCM, 0 °C to rt

677% yield O
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a) Two-Component Experiments

N/OMe
CO,Bn
| 2

1a (1.0 equiv) 2a (2.0 equiv)

N/OMe
| O
RN
CO,Et
1a (1.0 equiv) 3 (2.0 equiv)

b) Stepwise Mechanism

OMe
e
NI o)
§
+ CO,Et
Z
7 (1.0 equiv) CO2BN 32,0 equiv)

Mechanistic Investigations

N/OMe
CsOAc (30 mol%) |
[Cp*Rh(l11)] (5 mol%)
ol
TFE (0.1 M) =
60°C,16 h
7 19% yield ©O28N
N/OMe
CsOAc (30 mol%) |
[Cp*Rh(II1)] (5 mol%)
ol
TFE (0.1 M) OH

60 °C, 16 h

CsOAc (30 mol%)
[Cp*Rh(lIN] (5 mol%)

-

o

TFE (0.1 M)
60 °C, 16 h

4aa 12% yield 7:1 dr
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Proposed Mechanism
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Summary

Strain-Release Construction of Quaternary Carbon Centers

N/OMe
N/OMe o) o CsOAc
Cp*Rh(lll
I . - L [Cp*Rh(IN)] OH
CO,Et  TFE = :
T cogEt
R'(O)C *

v quaternary carbon centers vdiastereoselectivity
v E-selectivity vbroad FG tolerance vthree-component
vtwofold C-C bond cleavage vmild conditions
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Writing Strategy

‘ Importance of the strain-release

\ 4

Properties of the “spring-loaded”
compounds

\ 4

Application of the “spring-loaded”
compounds
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The First Paragraph

During the past decades strain-release driven transformations have
gathered significant attention in synthetic organic chemistry, materials
science, and bioconjugation. Accordingly, molecules that bear a bridging
bond between opposite carbon or nitrogen atoms such as [1.1.1]propellane,
bicyclo[1.1.0]butanes (BCBs), or 1-azabicyclo[1.1.0]butanes have emerged
as a privileged class of compounds. Owing to their relative destabilization,
arising from bond length and bond angle distortions, torsional strain, and
nonbonded as well as transannular steric interactions, these “spring-
loaded”® compounds display 1-bond-type behavior towards nucleophiles,
electrophiles, and radicals. Such versatile reactivity is especially desirable
in the field of medicinal chemistry where they are commonly used to install
the bicyclo[1.1.1]pentane, cyclobutane, and azetidine moieties, motifs which
serve as bioisosteres in the development and modification of
pharmaceuticals.
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Writing Strategy

‘ Summary of this work

\ 4

‘ Advantages of this method

4

‘ Conversion of the product

4

‘ Mechanism of the reaction
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The Last Paragraph

In conclusion, we have developed a highly diastereoselective and E-
selective three-component protocol for the construction of quaternary
carbon centers via strain-release from BCB esters by twofold C-C
bond cleavage. The reaction proceeds under mild conditions and
tolerates a wide range of common functional groups. The products
could be further transformed into valuable a-quaternary B-lactones.
The high diastereoselectivity was rationalized by mechanistic
investigations that suggest a catalytic cycle proceeding through a key
C-C o-bond insertion, followed by a [B-carbon elimination and a
subsequent allylation via a six-membered transition state.
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Representative Examples

We were intrigued when we observed the anti-product 4aa in 60% vyield
with excellent E-selectivity and diastereoselectivity that was formed upon
twofold C—-C bond cleavage of the BCB moiety and subsequent addition to
aldehyde 3 . (adj. IF&FH)).

The relative configuration of the stereocenters was unambiguously
assigned by X-ray crystallographic analysis of a derivative of sulfone 4sa
that was obtained after esterification and subsequent debenzylation. (adv.

A Ri).

In order to get insight into the underlying reaction mechanism a preliminary
series of mechanistic experiments was conducted (Figure 3).(adj. ¥ 7E/).
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