# Literature Report VIII

Use of Strain-Release for the Diastereoselective Construction of Quaternary Carbon Centers

> Reporter: Yi-Xuan Ding Checker: Zhou-Hao Zhu Date: 2021-09-13

Glorius, F. et al. J. Am. Chem. Soc. 2021, 143, 7648.

# **CV of Prof. Frank Glorius**



#### **Background:**

**1992-1997** Studies of chemistry, the University of Hannover

**1995-1996** Research studies, Stanford University

**1996-1997** Diploma thesis, University of Hannover

**1997-2000** PhD, University of Basel

**2000-2001** Postdoc., Harvard University

2001-2004 Independent research at the Max-Planck-Institut für Kohlenforschung

**Frank Glorius** 

**2004-2007** C3-Professor, University of Marburg

**2007-now** Full Professor, University of Münster

#### **Research Interests:**

- Arene Hydrogenation
- Photocatalysis

- N-heterocyclic carbene (NHC) organocatalysis
- Biological membranes

C–H Activation



# **2** Use of Strain-Release for the Construction of Quaternary Carbon Centers



3





4

#### **Strain release amination**



Baran, P. S. et al. Science 2016, 351, 241.



Baran, P. S. et al. Science 2016, 351, 241.



#### Carbopalladation



Aggarwal, V. K. et al. Nat. Chem. 2019, 11, 117.

#### **Radical addition**



Aggarwal, V. K. et al. J. Am. Chem. Soc. 2019, 141, 9511.

#### **Radical addition**



Cintrat, C. et al. Angew. Chem. Int. Ed. 2020, 59, 2618.

#### **Nucleophilic addition**



Gryko, D. et al. J. Am. Chem. Soc. 2020, 142, 5355.

#### Cycloisomerization



Wipf, P. et al. J. Am. Chem. Soc. 2008, 130, 6924.

# **Project Synopsis**



- Strain-release Protocol
- C-H Activation
- Three-component Reaction

#### This work



# **Optimization of Reaction Conditions**



| Entry <sup>a</sup>     | Solvent     | Additive                        | T (°C) | Yield (%) |
|------------------------|-------------|---------------------------------|--------|-----------|
| 1                      | TFE         | CsOAc                           | 60     | 60        |
| 2                      | DCE         | CsOAc                           | 60     | traces    |
| 3                      | 1,4-dioxane | CsOAc                           | 60     | -         |
| 4                      | HFIP        | CsOAc                           | 60     | 8         |
| 5                      | TFE         | CsOAc                           | rt     | 9         |
| 6                      | TFE         | CsOAc                           | 40     | 40        |
| 7                      | TFE         | CsOAc                           | 80     | 47        |
| 8                      | TFE         | Na <sub>2</sub> CO <sub>3</sub> | 60     | 28        |
| 9                      | TFE         | KOAc                            | 60     | 55        |
| 10                     | TFE         | NaOAc                           | 60     | 49        |
| 11                     | TFE         | K <sub>3</sub> PO <sub>4</sub>  | 60     | 30        |
| 12 <sup><i>b</i></sup> | TFE         | CsOAc                           | 60     | 82        |

<sup>a</sup>Reactions were performed on a 0.10 mmol scale with  $[Cp^*Rh(CH_3CN)_3](SbF_6)_2$  as the catalyst. <sup>b</sup>2.0 equiv of **2a**.

# **Substrate Scope**



15

# **Substrate Scope**



### **Substrate Scope**





# **β-Lactone Formation**



# **Mechanistic Investigations**



### **Proposed Mechanism**



# Summary





# **The First Paragraph**

During the past decades strain-release driven transformations have gathered significant attention in synthetic organic chemistry, materials science, and bioconjugation. Accordingly, molecules that bear a bridging bond between opposite carbon or nitrogen atoms such as [1.1.1]propellane, bicyclo[1.1.0]butanes (BCBs), or 1-azabicyclo[1.1.0]butanes have emerged as a privileged class of compounds. Owing to their relative destabilization, arising from bond length and bond angle distortions, torsional strain, and nonbonded as well as transannular steric interactions, these "springloaded" compounds display  $\pi$ -bond-type behavior towards nucleophiles, electrophiles, and radicals. Such versatile reactivity is especially desirable in the field of medicinal chemistry where they are commonly used to install the bicyclo[1.1.1]pentane, cyclobutane, and azetidine moieties, motifs which the development and bioisosteres in modification of as serve pharmaceuticals.



In conclusion, we have developed a highly diastereoselective and Eselective three-component protocol for the construction of quaternary carbon centers via strain-release from BCB esters by twofold C-C bond cleavage. The reaction proceeds under mild conditions and tolerates a wide range of common functional groups. The products could be further transformed into valuable  $\alpha$ -quaternary  $\beta$ -lactones. high diastereoselectivity was rationalized by mechanistic The investigations that suggest a catalytic cycle proceeding through a key C-C  $\sigma$ -bond insertion, followed by a  $\beta$ -carbon elimination and a subsequent allylation via a six-membered transition state.

We were **intrigued** when we observed the anti-product 4aa in 60% yield with excellent E-selectivity and diastereoselectivity that was formed upon twofold C-C bond cleavage of the BCB moiety and subsequent addition to aldehyde 3. (*adj.* 好奇的).

The relative configuration of the stereocenters was **unambiguously** assigned by X-ray crystallographic analysis of a derivative of sulfone 4sa that was obtained after esterification and subsequent debenzylation. (*adv.* 不含糊地).

In order to get insight into the **underlying** reaction mechanism a preliminary series of mechanistic experiments was conducted (Figure 3).(*adj.* 潜在的).

