Literature Report 5

A Biphilic Phosphetane Catalyzed N-N Bond Forming

Reporter: Han Wang Checker: Wen-Jun Huang Date: 2021.12.06

Radosevich, A. T.* *et al. J. Am. Chem. Soc.* **2017**, *139*, 6839. Radosevich, A. T.* *et al. J. Am. Chem. Soc.* **2021**, *143*, 14464.

CV of Dr. Alexander T. Radosevich

Background:

- **1998-2002** B.S., University of Notre Dame
- **2002-2007** Ph.D., University of California, Berkeley
- **2007-2010** Postdoc., MIT (D. G. Nocera)
- 2010-2016 Assistant Professor, The Penn State University

Associate Professor, The Penn State University

□ 2016-now Associate Professor, MIT

Research:

Development of catalytic potential of phosphorus compounds and new methodology

1 Introduction

2 Intramolecular N-N Bond Formation via P^{III}/P^v=O Redox

3 Intermolecular N-N Bond Formation via P^{III}/P^v=O Redox

Introduction

TPRV1 receptor (antagonists for analgesics)

Xanthodermine (nAChR Inhibitor)

Gliclazide (hypoglycemic drug)

Py

Newbouldine (natural product)

Cinachyramine (natural product) MeO N H OH N H OMe

Reyataz (antiretroviral drug)

Stoichiometric Method

Collet, A. et al. Tetrahedron Lett. 1998, 39, 8845.

Kelsey, R. D. et al. Org. Lett. 2005, 7, 713.

Stoichiometric Method

Trauner, D. et al. Tetrahedron 2010, 66, 6626.

Aza-Lossen Rearrangement

Ti-Induced N-N Formation

Cu Catalyzed N-N Formation

Huang, Z.-Z. et al. Synlett. 2011, 4, 569.

Ir Catalyzed N-N Formation

Chen, G. et al. Nat. Chem. 2021, 13, 378.

Cadogan Reaction

Optimization of Reaction Parameters

N ^{-Ph}	R ₃ P=O (15 mol%)	N—Dh
	PhSiH ₃ (2 equiv.)	
1	toluene, 100 °C, 3 h	2

Entry ^a	R ₃ P=O	silane	Conv. [%]	Yield [%]
1	3[O]	$PhSiH_3$	49	20
2	4[O]	$PhSiH_3$	45	31
3	5[O]	$PhSiH_3$	99	83
4	6[O]	$PhSiH_3$	21	1
5	7[0]	$PhSiH_3$	96	24
6	8[O]	$PhSiH_3$	21	6
7	none	$PhSiH_3$	14	0
8	5[O]	none	12	0
9	5	$PhSiH_3$	99	93

^a Conversion and yield determined via GC vs internal standard..

Substrate Scope

Mechanistic Study

Mechanistic Study

Intermolecular N-N formation

Optimization of Reaction Parameters

Entry ^a	Change from standard conditions	Yield [%]	Standard Conditions
1	None	86 (81)	Ма
2	1 (15 mol%)	86	Me Me Po
3	1[O] (5 mol%)	84 ^b	Me Me
4	No catalyst 1[O]	0	1[O] (15 mol%)
5	No silane	0	Ph ₂ SiH ₂ (4 equiv.)
6	No 2,4,6-trimethylbenzoic acid	Trace	Me
7	Under ambient air	82	(2 equiv.)
8	100 °C	79	CO ₂ H
9	THF (0.5 M)	41	THF (1.0M)
^a Yields were determined through ¹⁹ F NMR with 4-fluorotoluene as an internal standard. ^b 72 h reaction time.			80 °C, 24 n

Substrate Scope

Substrate Scope

Azoarene reduction

Mechanism Study

Crossover Competition

Proposed Mechanism

Summary

Intramolecular N-N Formation

Radosevich, A. T. et al. J. Am. Soc. Chem. 2017, 139, 6839.

Intermolecular N-N Formation

Radosevich, A. T. et al. J. Am. Soc. Chem. 2021, 143, 14464.

The First Paragraph

写作思路

Hydrazines and related N–N containing derivatives have significant value in organic chemistry, including as natural products and pharmaceuticals. Although the N–N bond presents a potential strategic site for synthesisespecially within medical chemistry-it is only infrequently targeted for retrosynthetic disconnection. In part, this state of play reflects certain constraints in the methods for N-N bond formation, particularly in an intermolecular sense. Stoichiometric methods employ prefunctionalized Nbased reagents whose stability and structural variation are intrinsically bracketed by the high electronegativity of the nitrogen atom. Complementarily, several notable advances have recently been achieved in catalytic intermolecular N-N bond formation, despite the inherent challenges associated with synthesis of such a weak and nonpolar bond.

Transition-metal-catalyzed nitrene transfer has successfully been applied to the imination of tertiary amines and the N–H insertion of acylnitrene equivalents to N-alkylanilines, specifically by decomposition of bespoke nitrene donors such as 1,4,2-dioxazol-5-ones. Among unfunctionalized precursors, simple diarylamine/carbazole substrates have been subject to intermolecular oxidative N–N coupling under aerobic Cu-catalyzed, Fe-catalyzed or anodic electrochemical conditions, although the realization of cross selectivity remains substrate dependent.

In summary, the results described above constitute a new and robust organophosphorus-catalyzed protocol for cross-selective intermolecular N-N coupling via $P^{III}/P^{V}=O$ redox cycling that makes use of readily accessible coupling partners in the construction of valuable hydrazine products. Despite the potential lability of the N-N bond under reducing conditions, the high chemoselectivity of the catalytic reductive system allows the synthesis of the target bond with excellent functional group tolerance even among other reductively sensitive functionalities. Critical to the success of this method is the versatility of the P^{III}/P^V=O redox couple to manage diverse reductive transformations, which is manifest in the twostage, autotandem catalytic reaction process.

Given the ready accessibility of nitroarene and aniline partners, we envision that these results might enable a fragment coupling approach to the preparation of highly functionalized hydrazines and related N-N containing derivatives with potential utility in medicinal chemistry and other applications.

Representative Examples

In this vein, prior work has established the viability of organophosphorus-catalyzed reductive N-functionalization of nitroarenes ... (vein 静脉, in this vein 在这种情况下)

Reactions at either higher temperature (entry 8) or higher dilution (entry 9) resulted in erosion of yield. (侵蚀, 表示收率降低)

Taken together with literature precedent, these experimental findings are best accommodated by an autotandem catalytic reaction mechanism for the intermolecular N-N reductive coupling involving two sequential and mechanistically distinct reduction events, as illustrated. (结合文献中的先例)

Acknowledgement

