Literature Report IX

Catalytic Enantioconvergent Allenylation of Aldehydes with Propargyl Halides

Reporter: Xiao-Qing Wang Checker: Yi-Xuan Ding Date: 2022-3-21

Wang, Z. et al. Angew. Chem. Int. Ed. 2022, 61, 10.1002/anie.202117114

Research Interests:

- Transition metal catalysis
- Organocatalysis
- Radical chemistry

Education and Employment:

- D 2007–2011 B.S., Nanjing University
- **2011–2015** Ph.D., The Hong Kong University of Science and Technology
- **2016–2019** Postdoc., California Institute of Technology
- □ Now Distinguished Researcher, Westlake University

2 Use of chiral starting materials to access α -allenols

 $\frac{3}{2}$ Catalytic asymmetric synthesis to access α -allenols

Introduction

Synthesis of Chiral *α*-Allenols

Furstner, A. et al. Angew. Chem. Int. Ed. 2003, 42, 5355

Murakami, M. et al. Angew. Chem. Int. Ed. 2007, 46, 7101

Ma, S. et al. Chem. Eur. J. 2013, 19, 716

Ma, S. et al. Chem. Commun. 2015, 51, 6956

Zambron, B. K. et al. Org. Lett. 2019, 21, 3904

Yu, C.-M. et al. Org. Lett. 2018, 20, 1521

Synthesis of Chiral *α*-Allenols

Construction of Chiral α -Allenols via Asymmetric Alkynylogous Aldol Reaction

List, B. et al. Angew. Chem. Int. Ed. 2016, 55, 8962

Feng, X. et al. ACS Catal. 2016, 6, 2482

Feng, X. et al. ACS Catal. 2016, 6, 2482

Yin, L. et al. Angew. Chem. Int. Ed. 2020, 59, 1562

Asymmetric Conjunctive Cross-coupling Reaction

Construction of Chiral α -Allenols via Asymmetric Conjunctive Cross-coupling Reaction

Morken, J. P. et al. Angew. Chem. Int. Ed. 2020, 59, 10311

Example 1 Construction of Chiral α -Allenols via Asymmetric Tandem Cross-coupling and Alkynylogous Aldol Reaction

Sun, J. et al. Org. Lett. 2021, 23, 5175

Asymmetric Tandem Reaction

Synthesis of Chiral *α*-Allenols

Asymmetric Synthesis of *a***-Allenols**

Asymmetric synthesis of α -allenols from secondary propargyl bromides

Wang, Z. et al. Angew. Chem. Int. Ed. 2022, 61, 10.1002/anie.202117114

Reaction Conditions Optimization

Reaction Conditions Optimization

	Br Et + Ph—CHO TIPS racemic 1.2 equiv Br + Ph—CHO TIPS TI	$\begin{array}{c} 2 \\ 1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	Et allenols	
Entry	Variation from the "standard conditions"	Yield (%)	dr	ee (%)
1	none	88	>20:1	98
2	no CrCl ₂	<2	-	-
3	no (<i>S</i> , <i>R</i>)- L1	24	1:1	-
4	Propargyl CI, instead of Br	76	>20:1	98
5	TMSCI, instead of Cp ₂ ZrCl ₂	18	>20:1	-
6	TESCI, instead of Cp ₂ ZrCl ₂	<2	-	-
7	Me ₂ SiCl ₂ , instead of Cp ₂ ZrCl ₂	60	20:1	96
8	Zn, instead of Mn	9	15:1	-
9	THF, instead of DME	72	>20:1	95
10	MeCN, instead of DME	75	11:1	90
11	0.1 M, instead of 0.05 M, in DME	81	>20:1	95
12	1.0, instead of 1.5, equiv Cp_2ZrCl_2	70	>20:1	99
13	5 mol% CrCl ₂ , 6 mol% (<i>S</i> , <i>R</i>)-L1	84	>20:1	99

Scope of Substrates-Aromatic Aldehydes

Scope of Substrates-Aliphatic Aldehydes

Scope of Substrates-Chiral Aldehydes

Scope of Substrates

a) Access to all stereoisomers

Post-functionalizations

b) Synthetic transformations

Preliminary Mechanistic Study

Proposed Mechanism

Summary

Catalytic asymmetric synthesis of α -allenols

Summary

Asymmetric synthesis of α -allenols from secondary propargyl bromides

Wang, Z. et al. Angew. Chem. Int. Ed. 2022, 61, 10.1002/anie.202117114

The First Paragraph

Allenol has emerged as a common building block in organic synthesis in the last few decades. Structurally, allenois are composed of allene and alcohol functional groups with variable connectivity. The presence of both functionalities endows the rich chemical reactivity of such molecules. Among the diverse allenols, α -allenols bear the hydroxyl unit at the α -position and represent the most useful and studied subclass regarding synthesis and application. Due to the orthogonal distribution of cumulene molecular orbitals, α -allenols can have both axial and central chiralities when differently substituted. These chiral α -allenols have served as valuable substrates in a wide range of transformations, including cycloaddition, cycloisomerization, electrophilic addition, and Pd-catalyzed coupling reactions. Moreover, they have also been used as key intermediates in the synthesis of many natural products and bioactive molecules.

The Last Paragraph

铬催化手性汇聚式 α−联烯醇的合成

In summary, we have developed a Cr-catalyzed enantioconvergent allenylation reaction of aldehydes with racemic propargyl halides. This robust method employs simple and readily accessible materials, exhibits exceptional functional group tolerance and broad substrate scope, and provides facile access to a wide range of valuable optically enriched α -allenols with two or three continuous chiral centers, including both central and axial chirality. Further efforts are underway to develop generally efficient catalytic systems for radical-involved asymmetric alkylations of carbonyl compounds.

In sharp contrast, the simultaneous efficient control over both axial and central chiralities remains an elusive challenge. (然而,…仍具挑战) Its catalytic asymmetric variants have also received considerable attention, and substantial progress has been achieved. (重大的) From a practical point of view, it is noteworthy that the yield of the allenylation product is only modestly diminished, if the concentration is increased from 0.05 M to 0.1 M, 1.0 equivalent of Cp₂ZrCl₂ is used, or 5 mol% CrCl₂ is used. (从实用的角度)

Thanks for your attention