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O The spirocyclic alkaloid (-)-acutumine was first
iIsolated from the Chinese moonseed plant,
possesses selective T-cell cytotoxicity and
antiamnesic properties.

O These alkaloids contain densely functionalized

[4.3.3]propellane cores with a spirofused

cyclopentenone and vicinal quaternary
Sinomenium Acutum centers.




Retrosynthetic Analysis
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Synthesis of (-)-10-Hydroxyacutuminine
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Retrosynthetic Analysis
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Dieckmann Condensation
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Summary
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The First Paragraph

The spirocyclic alkaloid (-)-acutumine was first isolated from the Chinese
moonseed plant, a climbing shrub used in traditional folk medicine for its
analgesic, anti-inflammatory, and anti-rheumatic properties. After its
isolation in 1929, the structure of 1 evaded elucidation for nearly 40 years,
until it was finally solved by single-crystal X-ray diffraction in 1967. In
preliminary studies, (-)-1 was shown to exhibit selective T-cell cytotoxicity
and anti-amnesic activity, the latter which was investigated in a Morris
mouse model and patented in 2003. Since the initial isolation of 1, several
additional acutumine alkaloids have been isolated, including (-)-
dechloroacutumine and (-)-acutuminine. These alkaloids contain densely
functionalized [4.3.3]propellane cores with a spirofused cyclopentenone and
vicinal quaternary centers. In addition, 1 and 2 bear a neopentyl chloride, a

rare structural feature for terrestrial natural products.
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The First Paragraph

Due to their complex and unusual structures, there has been significant
Interest in the biosynthesis, biological activity, and de novo syntheses of the
acutumine alkaloids. Two completed syntheses of 1 have been disclosed,
the first from Castle and co-workers in 2009 and the second from Herzon
and co-workers in 2013. In this communication, we report a synthetic
approach to the acutumine alkaloids that Ileverages a [2+2]
cycloaddition/retro-aldol sequence to build the propellane core and

provides access to (-)-10-hydroxyacutuminine.
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The Last Paragraph
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The Last Paragraph

1

In summary, an enantioselective synthesis of (-)-10-hydroxyacutuminine
was completed in 24 steps from 2-bromo-4-methoxyphenol. Our approach
featured an intramolecular, photochemical [2+2] cycloaddition to build the
propellane core. Subsequent application of a retro-aldol/Dieckmann
sequence afforded the requisite spirocyclic cyclopentenone found in natural
products; use of a-bromoketone 29 proved crucial for the successful
Dieckmann cyclization. Subsequent installation of the C7/C8 dimethoxy
enone and TBS deprotection afforded (-)-10-hydroxyacutuminine. Although
efforts to install the C10 neopentyl chloride were ultimately unsuccessful, 3
bears the complete carboskeleton and oxidation pattern of (-)-acutuminine.
These studies highlight the strategic advantages and challenges of
leveraging carbonyl chemistry to prepare densely functionalized natural

products.
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Representative Examples

1. These alkaloids contain densely functionalized [4.3.3]propellane cores

with a spirofused cyclopentenone and vicinal quaternary centers. (#2%Z4%
, TESRRY. BRIELAY)

2. Due to their complex and unusual structures, there has been
significant interest in the biosynthesis, biological activity, and de novo
syntheses of the acutumine alkaloids. (M\k&R%, MHTEAK)

3. These studies highlight the strategic advantages and challenges of

leveraging carbonyl chemistry to prepare densely functionalized natural

products. (Z&H....... REE L FnPkLk)
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