Literature Report 4

Ligand-Controlled Nickel-Catalyzed Regiodivergent
 Cross-Electrophile Alkyl-Alkyl Couplings of Alkyl Halid

Reporter: Juan Wang Checker: Qing-Xian Xie

2023-03-20

Zhao, W.-T.; Meng, H.; Lin, J.-N.; Shu, W.
Angew. Chem. Int. Ed. 2023, 62, e202215779

CV of Prof. Wei Shu (舒伟)

Research Interests:

- Medicinal Chemistry
\square Asymmetric Catalysis
\square Single Electron Catalysis

Background:

- 2001-2005 B.S., Nankai University
- 2005-2010 Ph.D., Shanghai Institute of Organic Chemistry (SIOC, CAS)
- 2010-2018 Postdoc., Massachusetts Institute of Technology
- 2010-2018 Postdoc., Princeton University, University of Zurich
- 2018-Now Associate Professor to Professor, Southern University of Science and Technology (SUSTech)

Contents

2 Ni-Catalyzed Regiodivergent Cross-Electrophile Couplings

3 Summary

Introduction

Development of Regiodivergent Cross-Electrophile Couplings

a). Metal-Catalyzed Cross-Electrophile Coupling at ipso-Carbon

b). Metal-Catalyzed Migratory Site-Selective Cross-Eletrophile Coupling

- Limited to Terminal- or α-Selectivity to Positioning Groups

Challenge: Differentiate \& Tune the Reactivity of Similar Intermediates

versus

versus

Introduction

Development of Regiodivergent Cross-Electrophile Couplings

c). Ni-Catalyzed Regiodivergent Cross-Eletrophile Coupling (This work)

Introduction

a) Metal-Catalyzed Cross-Electrophile Coupling at ipso-Carbon

Everson, D. A.; Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920
Prinsell, M. R.; Weix, D. J. Chem. Commun. 2010, 46, 5743

Introduction

a) Metal-Catalyzed Cross-Electrophile Coupling at ipso-Carbon

Everson, D. A.; Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920

Introduction

b) Metal-Catalyzed Migratory Site-Selective Cross-Electrophile Coupling

Chen, F.; Zhu, S. J. Am. Chem. Soc. 2017, 139, 13929

Introduction

b) Metal-Catalyzed Migratory Site-Selective Cross-Electrophile Coupling

Peng, L.; Yin, G. ACS Catal. 2018, 8, 310

Introduction

b) Metal-Catalyzed Migratory Site-Selective Cross-Electrophile Coupling

Introduction

Development of Regiodivergent Cross-Electrophile Couplings

c). Ni-Catalyzed Regiodivergent Cross-Eletrophile Coupling (This work)

Optimization of the Reaction Conditions

2

[^0]
Optimization of the Reaction Conditions

12

Scope For Migratory Alkyl Halides

1a
3a ${ }^{[b]}$: 72% yield; >20:1 r.r.
4a ${ }^{[\mathrm{lc]} \text { : }} \mathbf{7 1 \%}$ yield; 20:1 r.r.
$\mathbf{5 a}^{\text {[d]. }} \mathbf{7 0 \%}$ yield; $>20: 1$ r.r.

1b
$\mathbf{3 b}^{[b] \text {. }} \mathbf{7 1 \%}$ yield; $>20: 1$ r.r.
$\mathbf{4} \mathbf{b}^{[c]}$: 70% yield; >20:1 r.r.
$\mathbf{5 b}^{[d]}$: $\mathbf{7 1 \%}$ yield; $>20: 1$ r.r

1c
$3 c^{[b]}$: 62% yield; >20:1 r.r.
$\mathbf{4 c}^{[c]}: 55 \%$ yield; >20:1 r.r.
5c ${ }^{[d]}$: 56% yield; >20:1 r.r.

1 g
$3 \mathrm{~g}^{[b]}$: 66% yield; $>20: 1$ r.r.
$\mathbf{4 g}^{\text {[c]. }}$: 50% yield; $>20: 1$ r.r.
$\mathbf{5 g}^{[d]}: 52 \%$ yield; $>20: 1$ r.r.

1d
$3 d^{[b]}: 66 \%$ yield; $>20: 1$ r.r.
$\mathbf{4 d}^{[\mathrm{cc}]}$: 57% yield; 8:1 r.r.
5d ${ }^{[d]}$: 78% yield; $>20: 1$ r.r

1h
$3 h^{[b]}: 74 \%$ yield; >20:1 r.r.
$4 h^{[\mathrm{c}, \mathrm{e}]}: 68 \%$ yield; $8: 1$ r.r.
$\mathbf{5} \mathbf{h}^{[d]}$: 64% yield; >20:1 r.r.

Scope For Migratory Alkyl Halides

$1 i$
$3{ }^{[b]}$: 71% yield; $>20: 1$ r.r.
4i ${ }^{[\mathrm{cl]} \text { : }} 56 \%$ yield; 18:1 r.r.
5i ${ }^{[d]}$] 70% yield; 14:1 r.r.

1m
$3 \mathrm{~m}^{[b]}$: 69% yield; $>20: 1$ r.r.
$\mathbf{4 m}^{[\mathrm{cc]}}: 57 \%$ yield; 15:1 r.r.
$5 \mathrm{~m}^{[d]}$: 65% yield; >20:1 r.r.

1 j
$3{ }^{[b]}$: 65% yield; >20:1 r.r.
$4 \mathrm{j}^{[\mathrm{cl}]}$: 65% yield; $8: 1$ r.r.
$5 \mathrm{j}^{[d]}: 74 \%$ yield; $>20: 1$ r.r.

1 n
$3 \mathbf{n}^{[b]}$: 69% yield; >20:1 r.r.
$\mathbf{4 n}^{[\mathrm{c}, \mathrm{f}]}$: 66% yield; $>20: 1$ r.r.
$\mathbf{5 n}^{[d]]}$: 61% yield; $>20: 1$ r.r.

1k
$\mathbf{3 k}{ }^{[b]}$: 67% yield; $>20: 1$ r.r.
$4 \mathbf{k}^{[\mathrm{lc}]} 50 \%$ yield; $17: 1$ r.r.
$\mathbf{5 k}{ }^{[d]}$: 52% yield; $>20: 1$ r.r.

10
$30^{[b]}$: 62% yield; >20:1 r.r.
$40^{[\mathrm{c}, \text { f] }]} 44 \%$ yield; $>20: 1$ r.r.
$50^{[d]}: 65 \%$ yield; $>20: 1$ r.r.

11
31 ${ }^{[b]}$: 67% yield; $>20: 1$ r.r. 4I ${ }^{[c]}$: 54% yield; 18:1 r.r. $5 I^{[d]}$: 58% yield; $>20: 1$ r.r.

Conditions A for $3^{[b]}$:
$\mathrm{NiBr}_{2} \bullet$ dme/L6 in DMA
Conditions \mathbf{B} for $\mathbf{4}^{[\mathrm{cc} \text {. }}$
$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{L} 2$ in $\mathrm{MeOH} / \mathrm{TFE}=1 / 1$
Conditions C for $5^{[d]}$.
$\mathrm{NiBr}_{2} \cdot$ dme/L3 in MeOH

Scope For Non-Migrated Alkyl Halides

$$
\mathrm{Br}-\mathrm{Et}
$$

2b
$3 p^{[b]}$: 69% yield; $>20: 1$ r.r.
$4 p^{[c]}$: 78% yield; 13:1 r.r. (X-ray)
5p ${ }^{\text {[d,e]. }} 82 \%$ yield; >20:1 r.r. (X-ray)

2f
$3 t^{[b]}$: 70% yield; $>20: 1$ r.r. ${ }^{[g]}$ $4 \mathrm{t}^{\text {[c] }]: 56 \% ~ y i e l d ; ~>20: 1 ~ r . r . ~}{ }^{\text {[g] }}$ $5 t^{[d, e]}: 74 \%$ yield; $>20: 1$ r.r. ${ }^{[g]}$

$$
\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{13}
$$

2c
$3 q^{[b]}$: 64% yield; $>20: 1$ r.r. $4 q^{[c, e]}$: 67% yield; $>20: 1$ r.r. $5 q^{[d, e]}: 68 \%$ yield; 20:1 r.r.

$2 g$
$3 u^{[b]}: 61 \%$ yield; $>20: 1$ r.r. ${ }^{[g]}$ $4 u^{[c]}$: 65% yield; $>20: 1$ r.r. ${ }^{[g]}$
$5 u^{[d, f]}: 68 \%$ yield; $>20: 1$ r.r. ${ }^{[g]}$

$3{ }^{[b]}$: 58% yield; $>20: 1$ r.r
$4{ }^{[c]}$: 62% yield; 16:1 r.r.
$5 r^{[d]}: 54 \%$ yield; >20:1 r.r.

$3 \mathrm{v}^{[b]}$: 66% yield; $>20: 1$ r.r. ${ }^{[g]}$ $4 \mathbf{v}^{\text {[c] }]: ~ 60 \% ~ y i e l d ; ~>20: 1 ~ r . r . ~}{ }^{\text {[g] }}$
$5 \mathrm{v}^{[d, f]}: 56 \%$ yield; $>20: 1$ r.r. ${ }^{[g]}$

$2 e$
$3 s^{[b]}$: 63% yield; $>20: 1$ r.r. ${ }^{[g]}$ 4s ${ }^{[c]}$: 60% yield; $>20: 1$ r.r. ${ }^{[g]}$
5s ${ }^{[d, f]:} 62 \%$ yield; $>20: 1$ r.r. ${ }^{[g]}$

$2 \mathbf{i}$
$3 w^{[b]}$: 66% yield; $>20: 1$ r.r. ${ }^{[g]}$
$4 w^{[c]}$: 69% yield; $>20: 1$ r.r. ${ }^{[g]}$
$5 \mathrm{w}^{[d, f]}: 68 \%$ yield; $>20: 1$ r.r. ${ }^{[g]}$

Scope For Non-Migrated Alkyl Halides

2j

2k

21

2m
$3 \mathbf{x}^{[b]}: 73 \%$ yield; $>20: 1$ r.r. ${ }^{[g]} ; 1: 1$ d.r. ${ }^{[g]}$ $4 x^{[c]}$: 66% yield; $>20: 1$ r.r. ${ }^{[g]} ; 1: 1$ d.r. ${ }^{[g]}$ $\mathbf{5} \mathbf{x}^{[d, f]}: 70 \%$ yield; $>20: 1$ r.r. ${ }^{[g]} ; 5: 1$ d.r. ${ }^{[g]}$

2n
$3 a b^{[b]}$. n.d.
$4 a b^{[c]}$: n.d.
5ab ${ }^{[d, e]}: n . d$.
$3 y^{[b]}: 44 \%$ yield; $>20: 1$ r.r. ${ }^{[g]}$
$4{ }^{[1]}$ [c] 54% yield; $>20: 1$ r.r. ${ }^{[g]}$
$5 \mathbf{y}^{[d, f]}: 58 \%$ yield; 20:1 r.r. ${ }^{[g]}$
$3 z^{[b, e]}: 54 \%$ yield; >20:1 r.r. $\mathbf{4 z}^{[\mathrm{c}, \mathrm{e}, \mathrm{h}]}: 50 \%$ yield; 3:1 r.r.
$5 z^{[d, e]}: 35 \%$ yield; >20:1 r.r.
$3 \mathbf{a a}^{[b]}$: 51% yield; >20:1 r.r. 4aa ${ }^{[c, e]}: 58 \%$ yield; 7:1 r.r. 5aa ${ }^{[d, e, f]:} 54 \%$ yield; $>20: 1$ r.r.

Conditions C for $3^{[b]}$:
$\mathrm{NiBr}_{2} \cdot d m e / L 6$ in DMA
Conditions A for $\mathbf{4}^{[\mathrm{c}]}$.
$\mathrm{NiCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O} / \mathrm{L} 2$ in $\mathrm{MeOH} /$ TFE $=1 / 1$
Conditions B for $5^{[d]}$.
$\mathrm{NiBr}_{2} \cdot$ dme/L3 in MeOH

Regiodivergent Alkyl-Alkyl Coupling

Mechanistic Investigation

a. Radical Clock Reactions

Condition A: γ-alkylation (4ad'), 43\% conversion, $<5 \%$ yield
Condition B: β-alkylation (5ad'), 55% conversion, 24% yield
Condition C: δ-alkylation (3ad'), 63\% conversion, 33\% yield
b. Intermolecular Cross-Over Reactions

3b, 4b, or 5b
Condition A: 4b (28\% yield)
Condition B: 5b (45\% yield)
Condition C: 3b (9\% yield)
c. Ni-Catalyzed Regiodivergent Reductive Alkyl-Alkyl Couplings with δ-Bromoketone

Proposed Mechanism

Proposed Mechanism

Proposed Mechanism

Proposed Mechanism

Summary

The First Paragraph

Writing Strategies

The Importance of Metal－Catalyzed C－C Cross－Coupling

The Progress and Challenge of Metal－Catalyzed C－C Cross－Coupling

The Introduction of This Work

1．Metal－catalyzed carbon－carbon cross－ coupling reactions have evolved into one of the major technologies for C－C bond－forming event．（重要性）

2．Over the past decades，reductive cross－ coupling between two carbon electrophiles has become an attractive alternative for $\mathrm{C}-\mathrm{C}$ bond－ forming．．．However，control site－selectivity over similar secondary alkyl－Ni intermediates along the alkyl chain to realize divergent regioselectivity remains a formidable challenge．（进展及挑战）

3．Herein，we reported a ligand－controlled regiodivergent cross－electrophile coupling at specific sites．．．（介绍本文工作）

The Last Paragraph

Writing Strategies

The Summary of This Work

The Features of This Work

1．In summary，a ligand－controlled Ni－catalyzed regiodivergent cross－electrophile couplings with two distinct alkyl bromides in a predictable manner have been developed．Diverse site－selectivities have been realized using alkyl bromides by judicious choice of ligand and conditions to tune the migration of alkyl nickel species and alkyl－alkyl coupling．（总结）

2．The reaction features exclusive control the migration over non－migration between two migratory alkyl bormides as well as reativity differentiation between several similar alkyl－Ni species to afford $\beta-, \gamma$－， δ－alkylated amides from identical starting materials， offering a straightforward and unified means to building diverse saturated architectures from easily available and cost－effective alkyl halides．（介绍亮点）

Representative Examples

1．The reaction undergoes site－selective isomerization on one alkyl bromides in a controlled manner，providing switchable access to diverse alkylated structures at different sites of alkyl bromides．T．（用一种可以控制的方式；提供可转化的通向／得到．．．．．．）

2．This reaction offers a catalytic platform to diverse saturated architectures by alkyl－alkyl bond－formation from identical starting materials． （提供了一个催化方式．．．．．．）

3．The reaction features exclusive control the migration over non－ migration．．．offering a straightforward and unified means to building diverse saturated architectures from easily available and cost－effective alkyl halides．（提供一个直接和统一的手段．．．．．．）

Acknowledgement

Thanks for your attention!

[^0]: r.r. = Ratio of Regioisomers. r.r. refers to the ratio of the major regioisomer to all other regioisomers. Yield and r.r. were determined by GC analysis based on crude mixture of the reaction using n-dodecane as internal standard.

