Catalytic Asymmetric Cyclopropanations with Nonstabilized Carbenes

Kristen E. Berger, Raymond J. Martinez, Jianhan Zhou, and Christopher Uyeda*

Cite This: J. Am. Chem. Soc. 2023, 145, 9441-9447

Read Online

Abstract

Cyclopropanes are common building blocks in pharmaceuticals, agrochemicals, and organic materials. The most general methods for the synthesis of chiral cyclopropanes are catalytic additions of diazoalkanes to alkenes. However, a limitation of this approach is that diazoalkanes can only be safely handled on preparative scales if they possess stabilizing substituents. Here we show that gem-dichloroalkanes can serve as precursors to nonstabilized carbenes for asymmetric cyclopropanation reactions of alkenes. The process uses a cobalt catalyst and is proposed to involve the formation of a cationic carbenoid species bearing structural resemblance to the Simmons-Smith reagent. High levels of enantioselectivity are observed for monosubstituted, 1,1-disubstituted, and internal alkenes. The reaction is compatible with alkyl-substituted carbenes, which are susceptible to undergoing competing $1,2-$ hydride shifts.

Cyclopropanes are highly represented in pharmaceutical compounds ${ }^{1}$ because of their unique three-dimensional structure and potential to engage in strain-induced ringopening reactions. The most general approach to the synthesis of chiral cyclopropanes is the catalytic asymmetric addition of a diazoalkane to an alkene (Figure 1). Several classes of catalysts can perform this transformation, including chiral transition

Classes of Carbenes

Many Catalytic Approaches Few Catalytic Approaches

Figure 1. Catalytic asymmetric cyclopropanation reactions with stabilized and nonstabilized carbenes.
metal complexes ${ }^{2}$ and biocatalysts based on engineered P450 enzymes. ${ }^{3}$ Despite significant advances in this area, the reliance on diazoalkanes as carbene precursors poses significant liabilities. Diazo compounds are energetic molecules that require resonance stabilizing groups ${ }^{4}$ to be safely used on preparative scales. In the absence of these groups, strict engineering controls, such as in situ generation ${ }^{5}$ or continuous processing, ${ }^{6}$ are needed to mitigate the risk of violent exothermic decomposition. ${ }^{7}$

The Simmons-Smith reaction represents an alternative strategy for cyclopropanation that is particularly well-suited for the transfer of nonstabilized carbenes. ${ }^{8}$ In the Simmons-Smith reaction, a metal carbenoid is generated stoichiometrically from $\mathrm{CH}_{2} \mathrm{I}_{2}$ and a metal reductant such as Zn, Al, or Sm . Despite its over 50 -year history in organic chemistry, asymmetric Simmons-Smith reactions are much less developed than diazoalkane-based cyclopropanations. Early efforts focused on the use of cleavable chiral auxiliaries ${ }^{9}$ or stoichiometric chiral promoters. ${ }^{10}$ Catalytic asymmetric variants have since been demonstrated but are largely restricted to allylic alcohols. ${ }^{11}$ A notable exception is Shi's dipeptide ligand system, ${ }^{12}$ which does not require a directing group but has limited functional group compatibility.

All of the current catalytic asymmetric Simmons-Smith reactions rely on intercepting the intermediate zinc carbenoid with a chiral Lewis acid. ${ }^{13}$ The central challenge is the high background reactivity of the achiral zinc carbenoid, which often necessitates stoichiometric loadings of the chiral Lewis

Received: February 21, 2023
Published: April 22, 2023

acid or a directing group to preassociate the Lewis acid with the substrate. To circumvent this problem, we recently proposed an alternative mode of catalysis in which a transition metal carbenoid is generated from the oxidative addition of a $\mathrm{CR}_{2} \mathrm{X}_{2}$ reagent. ${ }^{14}$ Here we show that this approach provides a general entry into catalytic asymmetric cyclopropanations. Notably, the cobalt-catalyzed cyclopropanation allows for the transfer of alkyl-substituted carbenes, ${ }^{15}$ a process that is not efficient under Simmons-Smith conditions, even in a nonasymmetric context.

The dimethylcyclopropanation of model 1,3-diene 1 can be carried out in 95% yield using 2,2-dichloropropane, Zn , and (PDI) CoBr_{2} catalyst 3 (PDI = pyridine diimine) (Figure 2).

Figure 2. A chiral cobalt catalyst for the asymmetric reductive cylopropanation of alkenes using gem-dichloroalkanes.

With chiral pyridine bis(oxazoline) (Pybox) ligands, it was possible to obtain moderate levels of enantioselectivity (up to 45% ee). However, further optimization efforts using this ligand class were hampered by consistently low yields of cyclopropanation ($<28 \%$). Recognizing the high sensitivity of the reaction to the steric profile of the catalyst, we reasoned that C_{1}-symmetric ligands ${ }^{16}$ retaining the hindered aryl substituent might prove to be more promising. Accordingly, we identified the (OIP) CoBr_{2} complex 4 (OIP = oxazoline iminopyridine) as an effective catalyst, providing dimethylcyclopropane 2 in 90% yield with 93% ee.
The substrate scope of the catalytic asymmetric dimethylcyclopropanation is summarized in Table 1. Whereas the nonasymmetric reaction using (PDI) CoBr_{2} catalyst 3 was largely limited to 1,3 -diene substrates, (OIP) CoBr_{2} catalyst 4 displays a much broader scope that includes several classes of monoalkenes. The mode of asymmetric induction relies on the presence of a branched carbon on one side of the double bond, and substrates that fulfill this criterion reliably provide ee values in the $>80 \%$ range. For example, styrenes and their heterocyclic derivatives are effective substrates. 1,1-Disubstituted and (Z)-1,3-disubstituted alkenes may also be used, including those containing indane or tetralin ring systems. The reaction tolerates protic functionality, such as a free phenol and an unprotected indole. Thioethers do not undergo competing ylide formation, and no competing insertions into $\mathrm{C}-\mathrm{B}$ bonds
or epoxides were observed. Finally, aryl bromides, which are susceptible to oxidative addition by low-valent metal catalysts, are compatible with the reaction conditions.

The cobalt-catalyzed cyclopropanation is insensitive to electronic effects and provides high yields for both electronrich and electron-deficient alkenes. By contrast, the catalyst, being quite hindered, is exceptionally sensitive to the steric properties of the alkene. Monosubstituted alkenes react at the highest rates, followed by (Z)-1,2-disubstituted and 1,1disubstituted alkenes. (E)-1,2-Disubstituted alkenes react sluggishly but in some limited cases can be used. For example, a dienyl ester substrate yields the pyrethroid precursor ethyl chrysanthemate (14) with 97% ee.

The sensitivity to the substitution pattern of the alkene can be exploited to achieve selective monocyclopropanations of terpenoid polyalkenes. One instructive case is that of myrcene. In the cobalt-catalyzed cyclopropanation, the product is predominantly a single regioisomer (25) (10:1 rr). Under Simmons-Smith conditions using 1 equiv of a zinc carbenoid, all three monocyclopropane regioisomers are formed, alongside double and triple cyclopropanation products. ${ }^{17}$

Recognizing the potential value of sp^{3}-rich polycyclic frameworks in drug discovery, ${ }^{18}$ we sought to apply this reaction to the synthesis of chiral spirocyclopropanes (Figure 3A). ${ }^{19}$ The requisite gem-dichlorocycloalkanes can be readily synthesized in one step from their corresponding cyclic ketones using $\mathrm{WCl}_{6}{ }^{20}$ With little modification to the reaction conditions, spirocyclopropanes $30-37$ were prepared with high levels of enantioselectivity.

Vinylcyclopropanes are valuable starting materials for transition-metal-catalyzed ring-opening reactions. ${ }^{21}$ Access to vinylcyclopropanes in highly enantioenriched form provided us with an opportunity to examine the extent of chirality transfer when these intermediates are transformed into larger rings (Figure 3B). We selected catalytic 1,3-rearrangement ${ }^{22}$ and [5 $+1]$ cycloaddition ${ }^{23}$ reactions as targets because they proceed through organometallic oxidative addition/reductive elimination mechanisms with the potential to preserve stereochemistry. In both cases, the ee of the vinylcyclopropane was retained with high fidelity, providing a straightforward entry into chiral five- and six-membered rings.

As an alternative to heterogeneous reduction with Zn powder, the asymmetric cyclopropanation can also be carried out under homogeneous conditions using a tertiary amine as the reductant in combination with a photoredox cocatalyst and visible-light irradiation (Figure 4A). ${ }^{24}$ Notably, the inexpensive organic dye eosin Y proved to be effective and outperformed several commonly used precious metal Ru and Ir catalysts. Interestingly, under photoredox conditions, no yield of cyclopropane was observed without the inclusion of a ZnX_{2} additive. However, reactions conducted with ZnI_{2} (3.0 equiv) provided product 10 with a level of enantioselectivity similar to that observed under the standard catalytic conditions. This result suggests that the ZnX_{2} byproduct generated under Zn reduction conditions may be noninnocent in the mechanism.

To further probe the role of ZnX_{2}, single-turnover experiments were carried out in the absence of any external reductants. Cyclic voltammetry experiments indicated that the Co (II) complex undergoes a one-electron reduction at $E_{1 / 2}=$ -1.18 V vs $\mathrm{Cp}_{2} \mathrm{Fe} / \mathrm{Cp}_{2} \mathrm{Fe}^{+}$. This wave displays a large peak-topeak separation due to the coupled Br^{-}dissociation step. When ZnBr_{2} is present, the reduction wave of the Co (II) complex shifts anodically by 230 mV , which we attribute to

Table 1. Substrate Scope Studies ${ }^{a}$
(
${ }^{a}$ Isolated yields were obtained following purification. Enantiomeric excess (ee) values were determined by GC or HPLC analysis using chiral columns. See the Supporting Information for detailed procedures. ${ }^{b}$ An additional $10 \mathrm{~mol} \%$ portion of catalyst 4 was added. The total reaction time was $48 \mathrm{~h} .{ }^{c}$ The absolute configuration of product 23 was assigned by X-ray crystallography. The enantiomeric excess in parentheses was measured following crystallization.
ZnBr_{2} assisting in ionization through the formation of $\mathrm{ZnBr}_{3}{ }^{-}$. The authentic $\mathrm{Co}(\mathrm{I})$ complex 44 was prepared by treating Co (II) complex 4 with $\mathrm{NaEt}_{3} \mathrm{BH}$ (Figure 4A). ${ }^{25}$ When $\mathrm{Co}(\mathrm{I})$ complex 44 was treated with 1 and 2,2-dichloropropane, no cyclopropanation was observed. However, carrying out the same stoichiometric reaction with ZnBr_{2} gave a 60% yield of cyclopropane 2 (yield based on 2 equiv of $\mathrm{Co}(\mathrm{I})$ required for every equivalent of cyclopropane formed). These results show that ZnBr_{2} is not only involved in facilitating the reduction of
$\mathrm{Co}(\mathrm{II})$ to $\mathrm{Co}(\mathrm{I})$ but is also required to generate the active carbenoid intermediate responsible for cyclopropanation.

With these mechanistic insights, we hypothesize that cyclopropanation proceeds by a $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}(\mathrm{I})$ catalytic cycle (Figure 4B). Activation of $\mathrm{Me}_{2} \mathrm{CCl}_{2}$ by the $\mathrm{Co}(\mathrm{I})$ species likely occurs through a radical Cl abstraction mechanism. The less hindered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is unreactive in the cyclopropanation, which would be inconsistent with a concerted oxidative addition mechanism but in accordance with radical stability trends. A
(A) Synthesis of Chiral Spirocyclopropanes

34, 55\% Yield, 94% ee

31, 90% Yield, 90% ee

32, 37\% Yield, 96% ee
33, 91% Yield, 83% ee

$37^{a}, 34 \%$ Yield, 91% ee
(B) Chirality Transfer via Vinylcyclopropane Ring Opening

Figure 3. Synthetic applications of the asymmetric cyclopropanation. (A) Synthesis of chiral spirocyclopropanes using gem-dichloro reagents derived from cyclic ketones. (B) Chirality transfer processes for the asymmetric synthesis of larger rings from vinylcyclopropanes. ${ }^{a}$ An additional 10 $\mathrm{mol} \%$ portion of catalyst 4 was added. The total reaction time was 48 h .
radical mechanism for $\mathrm{C}-\mathrm{Cl}$ cleavage would explain the tolerance for $\mathrm{C}(\mathrm{Ar})-\mathrm{Br}$ bonds in the substrate scope. Cyclopropanations with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ are high-yielding but generally provide low levels of enantioselectivity with catalyst 4.

Capture of the $\mathrm{Me}_{2} \mathrm{ClC}$ • radical by $\mathrm{Co}(\mathrm{I})$ would generate a putative $\mathrm{Co}\left(\mathrm{CMe}_{2} \mathrm{Cl}\right)(\mathrm{Cl})$ species (45). According to DFT models, transfer of the $\mathrm{Me}_{2} \mathrm{C}$ fragment to styrene is energetically feasible and has a barrier of only $16.4 \mathrm{kcal} / \mathrm{mol}$ (Figure 4B). Alternatively, abstraction of Cl^{-}by the ZnX_{2} Lewis acid forms a cationic $\left[\mathrm{Co}\left(\mathrm{CMe}_{2} \mathrm{Cl}\right)\right]^{+}$species (46), and the barrier for $\mathrm{Me}_{2} \mathrm{C}$ transfer to styrene further decreases to $14.7 \mathrm{kcal} / \mathrm{mol}$. Notably, related cationic Co(II) alkyl species are proposed to be intermediates in olefin polymerization reactions catalyzed by related complexes. ${ }^{26}$

Metal carbenoids can be placed on a structural continuum between limiting $\mathrm{M}-\mathrm{CR}_{2} \mathrm{X}$ (haloalkyl) and $\mathrm{X}-\mathrm{M}=\mathrm{CR}_{2}$ (carbene) forms (Figure 4C). Previous computational studies suggest that the propensity of a metal carbenoid to undergo carbene transfer is positively correlated with the degree of carbene character. ${ }^{8 \mathrm{~d}}$ For example, $\mathrm{LiCH}_{2} \mathrm{Cl}$ has a high degree of carbene character, as evidenced by an acute $\mathrm{Li}-\mathrm{C}-\mathrm{Cl}$ bond angle. The calculated barrier for CH_{2} transfer from $\mathrm{LiCH}_{2} \mathrm{Cl}$ to ethylene is only $3.8 \mathrm{kcal} / \mathrm{mol}$. By comparison, $\mathrm{ClZnCH}_{2} \mathrm{Cl}$ has a more obtuse $\mathrm{Zn}-\mathrm{C}-\mathrm{Cl}$ angle and has a higher barrier for CH_{2} transfer ($13.1 \mathrm{kcal} / \mathrm{mol}$). The previously isolated (PDI) $\mathrm{Rh}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$ species 47 lies firmly in the haloalkyl form and is not known to engage in cyclopropanation reactions. ${ }^{27}$

An inspection of the optimized structure for the neutral carbenoid species 45 reveals a $\mathrm{Co}-\mathrm{C}-\mathrm{Cl}$ angle of 95° and a $\mathrm{Co}-\mathrm{C}$ distance of $1.97 \AA$. Upon Cl^{-}abstraction to generate cationic carbenoid 46, the lower coordination number and increased electrophilicity of Co cause the $\mathrm{Co}-\mathrm{C}-\mathrm{Cl}$ angle to decrease to 78°. This decrease in angle is accompanied by a decrease in the $\mathrm{Co}-\mathrm{C}$ distance to $1.93 \AA$, which is indicative of partial π-bonding character. Cyclopropanation reactions of zinc carbenoids rely on two primary frontier orbital interactions: donation of the alkene π electrons into the $\mathrm{C}-\mathrm{X} \sigma^{*}$ orbital and donation of the $\mathrm{Zn}-\mathrm{C} \sigma$ bond into the alkene π^{*} orbital. Analogous orbitals can be located for the optimized structure of cationic carbenoid 46 (Figure 4B). An orbital with $\mathrm{Co}-\mathrm{C} \sigma$ bonding character can be found at $\mathrm{HOMO}-8$, and the $\mathrm{C}-\mathrm{Cl}$ σ^{*} orbital appears at LUMO +8 .

Finally, DFT models provide a hypothesis for the origin of asymmetric induction (Figure 4D). In the lowest-energy transition state for the cyclopropanation of styrene with the cationic carbenoid 46, styrene approaches the carbene on the same side as the Bn group of the oxazoline. This approach initially seemed counterintuitive but, on closer inspection, allows the large dimethylcarbenoid to be situated on the less hindered face of the catalyst. The second consideration is the orientation of the Ph group of styrene, which is pointed away from the $\mathrm{N}-(i-\mathrm{Pr})_{2} \mathrm{Ph}$ substituent of the catalyst in the lowestenergy transition state.
(A) ZnX_{2} is Required for Cyclopropanation
Photoredox Conditions

with ZnI_{2} (3.0 equiv): 57% yield, 88% ee without $\mathrm{ZnX} \mathbf{Z}_{2}$ additives: 0% yield

Single Turnover Conditions

with ZnBr_{2} (1.0 equiv): 60% yield
without $\mathrm{ZnX}{ }_{2}$ additives: 0% yield
(B) Proposed Catalytic Cycle

CI Abstraction Mechanism for $\mathrm{Me}_{2} \mathrm{CCl}_{2}$ Activation

Figure 4. Mechanistic studies. (A) ZnX_{2} is critical for efficient cyclopropanation. (B) A proposed mechanism for CR_{2} transfer. (C) The propensity of a metal carbenoid to undergo CR_{2} transfer is correlated to the degree of carbene vs haloalkyl character. (D) Proposed origin of the enantioselectivity based on DFT models. See the Supporting Information for details regarding computational methods.

In summary, reactive transition metal carbenoids can be generated from the activation of readily available and
nonenergetic dihaloalkane reagents. This process significantly expands the scope of metal carbenoids that may engage in
reductive carbene transfer reactions beyond the zinc carbenoids used in the canonical Simmons-Smith process. By using chiral ligands on cobalt, highly enantioselective cyclopropanations can be carried out without the substrate scope limitations imposed by chiral Lewis acid catalysis.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c01949.

Experimental details, characterization data, and computational details (PDF)

Accession Codes

CCDC 2226831 and 2226832 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax: +44 1223336033.

■ AUTHOR INFORMATION

Corresponding Author

Christopher Uyeda - Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States; © orcid.org/0000-0001-9396-915X; Email: cuyeda@ purdue.edu

Authors

Kristen E. Berger - Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States; © orcid.org/0000-0001-5723-6661
Raymond J. Martinez - Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
Jianhan Zhou - Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
Complete contact information is available at:
https://pubs.acs.org/10.1021/jacs.3c01949

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This research was supported by the National Institutes of Health (R35 GM124791). C.U. acknowledges support from a Lilly Grantee Award. We thank Dr. Matthias Zeller for assistance with X-ray crystallography experiments.

- REFERENCES

(1) Talele, T. T. The "Cyclopropyl Fragment" is a Versatile Player that Frequently Appears in Preclinical/Clinical Drug Molecules. J. Med. Chem. 2016, 59, 8712-8756.
(2) (a) Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. Bis(oxazolines) as chiral ligands in metal-catalyzed asymmetric reactions. Catalytic, asymmetric cyclopropanation of olefins. J. Am. Chem. Soc. 1991, 113, 726-728. (b) Chen, Y.; Fields, K. B.; Zhang, X. P. Bromoporphyrins as Versatile Synthons for Modular Construction of Chiral Porphyrins: Cobalt-Catalyzed Highly Enantioselective and Diastereoselective Cyclopropanation. J. Am. Chem. Soc. 2004, 126, 14718-14719. (c) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D. G.; Davies, H. M. L. D2-Symmetric Dirhodium Catalyst Derived from a $1,2,2$-Triarylcyclopropanecarboxylate Ligand: Design, Synthesis and Application. J. Am. Chem. Soc. 2011, 133, 19198-19204. (d) Lee, W.-C. C.; Wang, D.-S.; Zhang, C.; Xie, J.; Li,
B.; Zhang, X. P. Asymmetric radical cyclopropanation of dehydroaminocarboxylates: Stereoselective synthesis of cyclopropyl α-amino acids. Chem. 2021, 7, 1588-1601.
(3) (a) Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes. Science 2013, 339, 307310. (b) Key, H. M.; Dydio, P.; Liu, Z.; Rha, J. Y. E.; Nazarenko, A.; Seyedkazemi, V.; Clark, D. S.; Hartwig, J. F. Beyond Iron: IridiumContaining P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes. ACS Cent. Sci. 2017, 3, 302-308.
(4) Miyazawa, T.; Suzuki, T.; Kumagai, Y.; Takizawa, K.; Kikuchi, T.; Kato, S.; Onoda, A.; Hayashi, T.; Kamei, Y.; Kamiyama, F.; Anada, M.; Kojima, M.; Yoshino, T.; Matsunaga, S. Chiral paddle-wheel diruthenium complexes for asymmetric catalysis. Nat. Catal. 2020, 3, 851-858.
(5) Morandi, B.; Carreira, E. M. Iron-Catalyzed Cyclopropanation in 6 M KOH with in Situ Generation of Diazomethane. Science 2012, 335, 1471-1474.
(6) Rullière, P.; Benoit, G.; Allouche, E. M. D.; Charette, A. B. Safe and Facile Access to Nonstabilized Diazoalkanes Using Continuous Flow Technology. Angew. Chem., Int. Ed. 2018, 57, 5777-5782.
(7) Green, S. P.; Wheelhouse, K. M.; Payne, A. D.; Hallett, J. P.; Miller, P. W.; Bull, J. A. Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org. Process Res. Dev. 2020, 24, 67-84.
(8) (a) Simmons, H. E.; Smith, R. D. A New Synthesis of Cyclopropanes from Olefins. J. Am. Chem. Soc. 1958, 80, 5323-5324. (b) Charette, A. B.; Beauchemin, A.; Francoeur, S. Acyloxymethylzinc Reagents: Preparation, Reactivity, and Solid-State Structure of This Novel Class of Cyclopropanating Reagents. J. Am. Chem. Soc. 2001, 123, 8139-8140. (c) Charette, A. B.; Beauchemin, A. Simmons-Smith Cyclopropanation Reaction. Org. React. 2001, 58, 1-415. (d) Nakamura, M.; Hirai, A.; Nakamura, E. Reaction Pathways of the Simmons-Smith Reaction. J. Am. Chem. Soc. 2003, 125, 23412350. (e) Zhang, L.; DeMuynck, B. M.; Paneque, A. N.; Rutherford, J. E.; Nagib, D. A. Carbene reactivity from alkyl and aryl aldehydes. Science 2022, 377, 649-654.
(9) (a) Mash, E. A.; Nelson, K. A. Homochiral ketals in organic synthesis. Diastereoselective cyclopropanation. J. Am. Chem. Soc. 1985, 107, 8256-8258. (b) Charette, A. B.; Cote, B.; Marcoux, J. F. Carbohydrates as chiral auxiliaries: asymmetric cyclopropanation reaction of acyclic olefins. J. Am. Chem. Soc. 1991, 113, 8166-8167.
(10) (a) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. Enantioselective Cyclopropanation of Allylic Alcohols with Dioxaborolane Ligands: Scope and Synthetic Applications. J. Am. Chem. Soc. 1998, 120, 11943-11952. (b) Lacasse, M.-C.; Poulard, C.; Charette, A. B. Iodomethylzinc Phosphates: Powerful Reagents for the Cyclopropanation of Alkenes. J. Am. Chem. Soc. 2005, 127, 1244012441. (c) Zimmer, L. E.; Charette, A. B. Enantioselective Synthesis of 1,2,3-Trisubstituted Cyclopropanes Using gem-Dizinc Reagents. J. Am. Chem. Soc. 2009, 131, 15624-15626.
(11) (a) Charette, A. B.; Molinaro, C.; Brochu, C. Catalytic Asymmetric Cyclopropanation of Allylic Alcohols with TitaniumTADDOLate: Scope of the Cyclopropanation Reaction. J. Am. Chem. Soc. 2001, 123, 12168-12175. (b) Shitama, H.; Katsuki, T. Asymmetric Simmons-Smith Reaction of Allylic Alcohols with Al Lewis Acid/N Lewis Base Bifunctional Al(Salalen) Catalyst. Angew. Chem., Int. Ed. 2008, 47, 2450-2453.
(12) (a) Long, J.; Yuan, Y.; Shi, Y. Asymmetric Simmons-Smith Cyclopropanation of Unfunctionalized Olefins. J. Am. Chem. Soc. 2003, 125, 13632-13633. (b) Long, J.; Du, H.; Li, K.; Shi, Y. Catalytic asymmetric Simmons-Smith cyclopropanation of unfunctionalized olefins. Tetrahedron Lett. 2005, 46, 2737-2740.
(13) Nakamura, E.; Hirai, A.; Nakamura, M. Theoretical Studies on Lewis Acid Acceleration in Simmons-Smith Reaction. J. Am. Chem. Soc. 1998, 120, 5844-5845.
(14) Werth, J.; Uyeda, C. Cobalt-Catalyzed Reductive Dimethylcyclopropanation of 1,3-Dienes. Angew. Chem., Int. Ed. 2018, 57, 13902-13906.
(15) Johnson, J. D.; Teeples, C. R.; Akkawi, N. R.; Wilkerson-Hill, S. M. Efficient Synthesis of Orphaned Cyclopropanes Using Sulfones as Carbene Equivalents. J. Am. Chem. Soc. 2022, 144, 14471-14476.
(16) (a) Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. Cobalt-Catalyzed Enantioselective Hydroboration of 1,1-Disubstituted Aryl Alkenes. J. Am. Chem. Soc. 2014, 136, 15501-15504. (b) Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. Highly Enantioselective CobaltCatalyzed Hydrosilylation of Alkenes. J. Am. Chem. Soc. 2017, 139, 9439-9442.
(17) De Smet, A.; Anteunis, M.; Tavernier, D. Some Carbene Reactions on Myrcene. Bull. Soc. Chim. Belg. 1975, 84, 67-75.
(18) Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752-6756.
(19) Werth, J.; Berger, K.; Uyeda, C. Cobalt Catalyzed Reductive Spirocyclopropanation Reactions. Adv. Synth. Catal. 2020, 362, 348352.
(20) Jung, M. E.; Wasserman, J. I. Efficient synthesis of vinyl chlorides and/or gem-dichlorides from ketones by treatment with tungsten hexachloride. Tetrahedron Lett. 2003, 44, 7273-7275.
(21) Meazza, M.; Guo, H.; Rios, R. Synthetic applications of vinyl cyclopropane opening. Org. Biomol. Chem. 2017, 15, 2479-2490.
(22) Zuo, G.; Louie, J. Highly Active Nickel Catalysts for the Isomerization of Unactivated Vinyl Cyclopropanes to Cyclopentenes. Angew. Chem., Int. Ed. 2004, 43, 2277-2279.
(23) Taber, D. F.; Kanai, K.; Jiang, Q.; Bui, G. Enantiomerically Pure Cyclohexenones by Fe-Mediated Carbonylation of Alkenyl Cyclopropanes. J. Am. Chem. Soc. 2000, 122, 6807-6808.
(24) del Hoyo, A. M.; Herraiz, A. G.; Suero, M. G. A Stereoconvergent Cyclopropanation Reaction of Styrenes. Angew. Chem., Int. Ed. 2017, 56, 1610-1613.
(25) Bowman, A. C.; Milsmann, C.; Hojilla Atienza, C. C.; Lobkovsky, E.; Wieghardt, K.; Chirik, P. J. Synthesis and Molecular and Electronic Structures of Reduced Bis(imino)pyridine Cobalt Dinitrogen Complexes: Ligand versus Metal Reduction. J. Am. Chem. Soc. 2010, 132, 1676-1684.
(26) Hojilla Atienza, C. C.; Milsmann, C.; Lobkovsky, E.; Chirik, P. J. Synthesis, Electronic Structure, and Ethylene Polymerization Activity of Bis(imino)pyridine Cobalt Alkyl Cations. Angew. Chem., Int. Ed. 2011, 50, 8143-8147.
(27) Haarman, H. F.; Ernsting, J. M.; Kranenburg, M.; Kooijman, H.; Veldman, N.; Spek, A. L.; van Leeuwen, P. W. N. M.; Vrieze, K. Oxidative Addition of Carbon-Chloride Bonds to Rhodium(I) Complexes Containing Terdentate Nitrogen Ligands. X-ray Analyses of Rhodium(I) Chloride and Rhodium(III) Chloromethyl Complexes. Organometallics 1997, 16, 887-900.

Recommended by ACS

Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization

```
Hanliang Zheng, Xiao-Song Xue, et al.
MARCH 20, 2023
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY READ
```


Dynamic Kinetic Reductive Conjugate Addition for Construction of Axial Chirality Enabled by Synergistic Photoredox/Cobalt Catalysis

Wei Xiong, Wen-Jing Xiao, et al.

MARCH 28, 2023
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
READ ■

Catalytic Asymmetric Deoxygenative Cyclopropanation

 Reactions by a Chiral Salen-Mo CatalystLi-Ya Cao, Chun-Xiang Zhuo, et al.
JANUARY 10, 2023
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
READ [

Organocatalytic Enantioselective Thermal [4 + 4] Cycloadditions

Vasco Corti, Karl Anker Jørgensen, et al.
JANUARY 05, 2023
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY READ

Get More Suggestions >

