
Enantioselective Synthesis of Indole-Fused Bicyclo[3.2.1]octanes via
Palladium(II)-Catalyzed Cascade Reaction
Gang Wang, Jin-Chen Li, Yong-Gui Zhou, and Zhi-Shi Ye*

Cite This: Org. Lett. 2021, 23, 802�807 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Indole-fused bicyclo[3.2.1]octanes are highly important structural
units in natural products and biologically active compounds. However, there has
been limited success in the enantioselective synthesis of these skeletons due to the
complexity of the structure and the control of the enantioselectivity. Herein an
enantioselective construction of indole-fused bicyclo[3.2.1]octanes bearing an all-
carbon quaternary bridgehead stereocenter was developed via an aminopalladition-triggered Heck-type reaction. The protocol
features mild conditions and good tolerance for a wide range of functional groups. The transformation can also be scaled up to
demonstrate its practicability. The mechanistic studies reveal that the formation of an intermediate indol-3-yl palladium species via
C�H activation should be ruled out.

Polycyclic indole derivatives are commonly found in a
number of biologically active compounds and natural

products.1 Among them, the indole-fused bicyclo[3.2.1]-
octanes and their derivatives exhibit remarkable biological
activities (Scheme 1a). For instance, Stryvomicine (1) was

isolated from the seed of Strychnos nux-vomica, which is a
traditional Chinese medicine and is widely used for the
treatment of rheumatoid arthritis, swelling pain, trauma, bone
fracture, facial nerve paralysis, myasthenia gravis, and polio-
myelitis sequela.2 Compound 2 is a potent selective Factor IXa
inhibitor, and its IC50 is 54.26 nM.3 Owing to their unique and
diverse potential biological properties, considerable efforts
have been undertaken to explore the synthesis of these
skeletons in the past several decades.4,5 However, the

enantioselective catalytic construction of indole-fused
bicyclo[3.2.1]octanes was flung into a dilemma due to the
complexity of the structure and the control of the
enantioselectivity. Therefore, the development of an efficient
strategy to access chiral bicyclo[3.2.1]octanes skeletons from
simple starting materials is of great significance.

The transition-metal-catalyzed cyclization/cross-coupling
cascade reaction of 2-alkynyl aniline derivatives with
nucleophiles or electrophiles is an attractive and practical
pathway for the construction of 2,3-disubstituted indoles.6
Mechanistically, the aminometalation of 2-alkynyl aniline
derivatives generates the indol-3-yl metal species, which
recently was employed for the construction of axially chiral
indoles by the Kitagawa, Li, and Zhu groups.7 Thus we
envisioned that the indol-3-yl metal species might serve as a
promising intermediate for the asymmetric Heck-type reaction
for the rapid construction of chiral bicyclo[3.2.1]octanes
containing an all-carbon quaternary bridgehead stereocenter
(Scheme 1b).8�11 However, several obvious challenges for this
proposed cascade transformation need to be addressed. First, a
transition-metal catalyst should allow the successive con-
struction of C�N and C�C bonds with stereoselective control
by nucleophilic cyclization and unactivated CC double-bond
insertion. Second, competitive protonolysis of the indol-3-yl
metal species easily takes place, which might result in
interrupting the unactivated CC double-bond insertion.6,12

Third, aromatic-driven nucleophilic cyclization could be
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Scheme 1. Enantioselective Synthesis of Indole-fused
Bicyclo[3.2.1]octanes via an Asymmetric Cascade Reaction
Strategy
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promoted by the base and thermodynamics,13 which might not
be of benefit to the asymmetric transition-metal-catalyzed
cascade reaction. Herein we report the enantioselective
synthesis of indole-fused bicyclo[3.2.1]octanes containing an
all-carbon quaternary bridgehead stereocenter via the amino-
palladition-triggered Heck-type reaction with excellent enan-
tioselectivity.

Initially, N-sulfonyl-2-alkynylanilide 4a was chosen as the
model substrate to test our hypothesis (Table 1). In the

presence of Pd(OAc)2/(R)-Binap, Na2CO3, and O2 as the
oxidant in DCE at 50 °C, the cascade reaction occurred to give
the desired product 3a in 16% yield with 24% ee, albeit with
inevitable protonolysis (16% yield of 5a, entry 1). The
assessment of the base revealed that K3PO4 is the best choice
with respect to the yield and enantioselectivity. (See more
details of the base in the Supporting Information.) The yield
and enantioselectivity were slightly improved to 46% yield and
54% ee when the amount of K3PO4 was increased to 1.5 equiv
(entry 8). The exploration of various solvents showed that the
transformation is very sensitive to the reaction medium. The
cascade reaction failed in DMF (entry 13). The formation of
the side product 5a was more favored when THF was
employed as the solvent. Delightfully, PhCF3 proved to be the
most favorable solvent in view of enantioselectivity and
reactivity.

Aiming to further improve the enantioselectivity of reaction,
a series of palladium precursors and chiral ligands were
subsequently evaluated (Table 2). Pd(amphos)Cl2 led to an
obvious enhancement in the enantioselectivity, delivering the
target product 3a in 63% yield with 84% ee (entry 5). The
effect of some commercially available bisphosphine ligands on
the reactivity and enantioselectivity was investigated. It turned
out that (S)-Synphos gave the best enantioselectivity with up
to 90% yield (entry 9). When the reaction temperature was
decreased and the reaction time was prolonged, 92%
enantioselectivity and 75% yield were afforded (entry 10).

With the optimized conditions in hand, we turned our
attention to investigate the substrate scope and generality of
the current aminopalladition/Heck-type cascade reaction. The
results are summarized in Scheme 2. As expected, various N-
sulfonyl activating groups reacted smoothly, furnishing the
indole-fused bicyclo[3.2.1]octanes containing all-carbon qua-
ternary bridgehead stereocenter 3a�3d in good yield with
excellent enantioselectivity. However, replacement of the
sulfonyl activating groups with a Boc or Ac group resulted in
no reactivity. Excitingly, a series of ortho-alkynylanilines
performed very well, and moderate to excellent enantiose-
lectivities were obtained (3h�3w). Notably, halides such as
fluoro and chloro were nicely tolerated, affording the
corresponding products with good to excellent enantioselec-
tivities. For example, 90% ee of 3l and 87% ee of 3o were
observed, respectively. The electronic properties of ortho-
alkynylanilines had a dramatic influence on the reactivity and
enantioselectivity. When the electron-donating methoxyl
(MeO) group was introduced to ortho-alkynylaniline, 94% ee
and 82% yield were gained (3j). However, ortho-alkynylani-
lines bearing electron-withdrawing substituents, such as Ac,
CF3, and CO2Me at the para position, furnished products with
moderate enantioselectivity and reactivity (3p�3r). It is
noteworthy that the effect of steric hindrance had only a
marginal influence on the enantioselectivity. For instance, the
transformation of 4u and 4v proceeded smoothly to provide
90% ee of 3u and 91% ee of 3v, respectively. The absolute
configuration of the product (�)-3k, which can be increased to
>99% ee by recrystallization with n-hexane/DCM, was
unambiguously determined by X-ray crystallographic analysis.

Subsequently, the substrate scope of R1 was explored. The
all-carbon quaternary stereocenter possessing various func-
tional groups, such as ester, amide, and ether, proceeded
smoothly to deliver indole-fused bicyclo[3.2.1]octanes 3x�3ag
with good to excellent enantioselectivities. However, presum-

Table 1. Screening of Bases and Solventsa

entry base (x equiv) solvent 3a/5a yield (%)b ee (%)c

1 Na2CO3 (1.0) DCE 16/16 24
2 K2CO3 (1.0) DCE 26/10 50
3 Cs2CO3 (1.0) DCE 29/11 48
4 Et3N (1.0) DCE 13/<5 48
5 tBuOK (1.0) DCE 41/22 46
6 tBuONa (1.0) DCE 28/21 48
7 K3PO4 (1.0) DCE 38/21 50
8 K3PO4 (1.5) DCE 46/23 54
9 K3PO4 (2.0) DCE 47/24 50
10 K3PO4 (1.5) THF 24/35 62
11 K3PO4 (1.5) PhMe 27/11 62
12 K3PO4 (1.5) PhH 35/13 64
13 K3PO4 (1.5) DMF <5/�
14 K3PO4 (1.5) PhCF3 64/21 74

a4a (0.10 mmol), Pd(OAc)2 (10 mmol %), (R)-Binap (11 mmol %),
base (x equiv), solvent, 4 Å molecular sieve (100 mg), O2 balloon, 50
°C, 20 h. bIsolated yield. cDetermined by HPLC.

Table 2. Screening of Catalyst Precursors and Chiral
Ligandsa

entry cat. Pd L* 3a/5a yield (%)b ee (%)c

1 Pd(OAc)2 L1 64/21 74
2 Pd(CF3CO2)2 L1 40/25 74
3 PdCl2(PPh3)2 L1 76/11 64
4 Pd(acac)2 L1 27/25 78
5 Pd(amphos)Cl2 L1 63/7 84
6 Pd(amphos)Cl2 L2 67/<5 6
7 Pd(amphos)Cl2 L3 55/23 28
8 Pd(amphos)Cl2 L4 74/7 84
9 Pd(amphos)Cl2 L5 61/<5 90
10d Pd(amphos)Cl2 L5 75/13 92

a4a (0.10 mmol), Cat. Pd (10 mmol %), L* (11 mmol %), K3PO4
(1.5 equiv), PhCF3, 4 Å molecular sieve (100 mg), O2 balloon, 50 °C,
20 h. bIsolated yield. cDetermined by HPLC. d45 °C, 48 h.
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ably as a result of steric hindrance, the substrate 3aa containing
t-butyl ester on the all-carbon quaternary stereocenter resulted
in a diminished yield and ee value. Notably, the desired
product 3af was constructed in 93% yield with 96% ee.

To verify the practical utility of our protocol, a scale-up
experiment was carried out, furnishing the desired product 3i
in 71% yield and with 92% ee (Scheme 3a). The reactivity and
enantioselectivity were maintained in the scale-up reaction.
Synthetic transformations of 3i were then conducted (Scheme
3b). The hydrolysis of 3i in the presence of K2CO3 afforded
the acid 6 in 94% yield without the loss of enantiopurity.

Treatment of 3i with MeMgBr delivered 7 in 89% yield with
92% ee. 3i was treated with LiAlH4 to give the alcohol 8 in the
92% yield with 92% ee. Additionally, 9 was obtained in the
90% yield via reduction and debenzylation. The CC double
bond of 3i was efficiently hydrogenated with Wilkinson’s
catalyst, delivering compound 10 in 95% yield with 92% ee.
Reduction of 3i following deprotection of the Ts group with
KOH in EtOH could produce 11 in the 63% yield, and
excellent enantioselectivity was maintained.14

Some control experiments have been conducted to explore
the reaction mechanism (Figure 1a,b). No desired product 3a
was observed when 5a was employed for the reaction under
standard conditions and even with 1.0 equiv palladium catalyst.

Scheme 2. Substrate Scope for Enantioselective Synthesis of
Indole-Fused Bicyclo[3.2.1]octanesa

aReaction conditions: 4 (0.10 mmol), Pd(amphos)Cl2 (10 mmol %),
(S)-Synphos (11 mmol %), K3PO4 (1.5 equiv), PhCF3, 4 Å molecular
sieve (100 mg), O2 balloon, 45 °C. Isolated yield. The ee value was
determined by HPLC.

Scheme 3. Scale-up Experiment and Synthetic
Transformations of Indole-Fused Bicyclo[3.2.1]octanes 3ia

aReaction conditions: (a) K2CO3, MeOH, 65 °C. (b) MeMgBr, THF,
0 °C to rt. (c) LiAlH4, THF, 0 °C. (d) 10 wt % Pd/C, THF. (e)
RhCl(PPh3)3, H2, toluene, 80 °C. (f) KOH, EtOH, 120 °C.

Figure 1. Control Experiments and Possible Mechanism.
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These results indicated that the indol-3-yl palladium species
was not formed via C�H activation, and the protonolysis
process was irreversible. According to the above results and
previous literature,6,8�11 a plausible mechanism is proposed in
Figure 1c. Coordination of the palladium(II) catalyst with the
triple bond of the N-sulfonyl-2-alkynylanilide 4 formed
intermediate A, which underwent aminopalladation to generate
the indol-3-yl palladium species B. Intramolecular CC
double-bond insertion of indol-3-yl palladium species B was
followed by �-H elimination to furnish the desired product 3
and the Pd�H species. The palladium(II) catalyst was
regenerated via reductive elimination and oxidation with O2.
Protonolysis of indol-3-yl palladium species B led to the
byproduct 5.

In summary, we have successfully developed an enantiose-
lective construction of indole-fused bicyclo[3.2.1]-octanes
containing an all-carbon quaternary bridgehead stereocenter
with excellent enantioselectivity via an aminopalladition-
triggered Heck-type reaction. The reaction features mild
conditions and tolerates a wide range of functional groups.
The practicability of this protocol can also be demonstrated
with a scaled-up reaction and divergent derivatization. The
mechanistic studies reveal that the formation of the
intermediate indol-3-yl palladium species by C�H activation
should be ruled out, and the protonolysis process was
irreversible. The strategy documented in this Letter affords a
new and efficient approach to synthetically valued chiral-
indole-fused bicyclo[3.2.1]octane structures, which might be
potentially useful for organic synthesis and medicinal
chemistry.
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