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ABSTRACT: Compared with the well-established asymmetric
Pictet−Spengler reactions on the pyrrole ring of indoles, the
catalytic asymmetric Pictet−Spengler reaction on the benzene ring
of indoles has been rarely studied. Herein the C6-selective Pictet−
Spengler reactions of indoles have been realized by employing 2-
(1H-indol-7-yl)anilines and isatins in the presence of chiral
phosphoric acid, affording novel polycyclic indole derivatives
bearing spiro quaternary stereocenters in excellent yields with
excellent enantioselectivities. This reaction could be conducted on the gram scale without any loss of activity or enantioselectivity.

Indole polycyclic skeletons are attractive synthetic targets
because they are ubiquitous in many alkaloids and synthetic

organic compounds.1 Therefore, various tactics have been
developed for the synthesis of such indole polycyclic
systems.2,3 Among these methods, the catalytic asymmetric
Pictet−Spengler reactions are one of the most straightforward
and facile approaches to these enantioenriched molecules.2a,c,e

Pioneering research on enantioselective Pictet−Spengler
reactions has been carried out by Jacobsen,4 List,5 Hiemstra,6

and other groups.7−9 In these studies, reactions occurred
selectively at the C2 or C3 position of indoles due to the
inherent strong nucleophilicity of the pyrrole ring (Scheme
1a).
Compared with the high reactivity of the pyrrole ring, the

nucleophilicity of the benzene ring of indoles was much lower.
However, the asymmetric Pictet−Spengler reaction on the
benzene of indoles is very valuable. For instance, a

diastereoselective Pictet−Spengler reaction at the C4 position
of the indole could be applied to the first syntheses of
(−)-hyrtioreticulin C and (+)-hyrtioreticulin D by Yamada’
group.10 Hence it is a highly desirable challenge to explore
catalytic asymmetric Pictet−Spengler reactions on the benzene
of indoles.
In recent years, the direct C6 functionalization of 2,3-

disubstituted indoles has been studied by several groups.11−13

However, the direct asymmetric C6 functionalizations of 2,3-
disubstituted indoles has remained a challenge and was only
realized by Zhang12 and our group13 via chiral phosphoric acid
catalysis. Very recently, we reported chiral-phosphoric-acid-
catalyzed regioselective and enantioselective reactions of 2-
(1H-indolyl)aniline derivatives and ketones for the synthesis of
indole N-alkylated aminals14a,b and C3-alkylated spiro-indolin-
2-ones.14c In consideration of the fact that catalytic asymmetric
Pictet−Spengler reactions on the benzene ring of indoles have
not been documented, we envisioned the design and synthesis
of 2-(1H-indol-7-yl)anilines to facilitate the C6-selective
enantioselective reaction. Herein we report the first Pictet−
Spengler reaction of 2-(1H-indol-7-yl)anilines and isatins,
affording novel C6-functionalized indole polycyclic com-
pounds in high yields with high enantioselectivities (Scheme
1b).
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Scheme 1. Catalytic Asymmetric Pictet−Spengler Reactions
of Indoles
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Initially, the model substrate 2-(1H-indol-7-yl)anilines 1
could be conveniently prepared from 7-bromoindoles and (2-
aminophenyl)boronic acid via Suzuki coupling in good yields.
Subsequently, 2-(3-methyl-2-phenyl-1H-indol-7-yl)aniline

1a and N-benzyl-protected isatin 2a were chosen as model
substrates (Table 1). Various chiral phosphoric acids were first

tested for the enantioselective Pictet−Spengler reaction using
toluene as the reaction medium at 50 °C (entries 1−8).
Unfortunately, most of the catalysts showed poor activity. With
the H8-BINOL-derived pentafluorophenyl-substituted chiral
phosphoric acid (R)-4e examined, the desired C6-functiona-
lizated adduct 3aa could be obtained in 30% yield with
moderate 77% ee (entry 5). To our delight, the use of catalyst
(R)-4h straightforwardly led to the spiro target molecule in
>95% yield with 89% ee (entry 8). The solvent effect was
studied using (R)-4h as the optimal catalyst, and the results
demonstrated that the solvents played a crucial role in the
reactivity and enantioselectivity (entries 9−14). When
dichloromethane and acetonitrile were used, the trans-
formation could be completed in 24 h, albeit with low
enantioselectivities (entries 9 and 11). Aromatic solvents were
suitable for the reaction, and toluene gave the best result (entry
8). To further improve the reactivity, we also investigated the
influence of the reaction temperature (entries 15−17). When
the temperature was increased, the reactivity was remarkable
improved, but the enantioselectivity slightly decreased. 50 °C
was chosen as the best reaction temperature. In the presence of

50 mg of anhydrous sodium sulfate as the dehydrating reagent,
the reaction time could be slightly diminished, whereas the
enantioselectivity of the Pictet−Spengler reaction could not be
improved. Finally, the optimized reaction conditions were
established: 5 mol % (R)-4h as the catalyst, 1.1 equiv of 2a to
1a, in toluene at 50 °C.
With the optimal reaction conditions in hand, we examined

the substrate scope of isatins (Scheme 2). When the model

reaction was carried out on a 0.20 mmol scale under the
optimal conditions, 3aa could be obtained in 99% isolated
yield with 89% ee. The steric hindrance of the substituted
groups on the N atoms of isatins had a significant influence on
the enantioselectivity of the reaction (3aa−3ag). Isatin 2a
bearing a small methyl group led to the formation of 3ab in
97% yield but with 82% ee. A series of aromatic methyl-
substituted isatins 2 reacted smoothly with indole 1a, affording
the corresponding products 3 in excellent yields with excellent
enantioselectivities (3ac−3ae). Isatins with more bulky
substituents such as benzhydryl or triphenylmethyl (Trt)
delivered the desired adducts with 90% ee (3af, 3ag). The
benzhydryl substituent was identified as the optimal protecting
group for the following research (3ah−3ak). A variety of
isatins bearing groups at different positions on benzene ring
were tested, and most of them were well tolerated in this
catalysis system. The corresponding annulated products were
obtained in excellent yields with high enantioselectivities. To
our surprise, when 6-bromoisatin 2g was employed, the
reaction became sluggish and gave only poor 22% ee (3ai).
When 7-bromoisatin 2k was used, 3ak could be achieved in
96% yield with 90% ee.

Table 1. Optimization of the Reaction Conditions

entrya CPA solvent T (°C) t (h) yield (%)b ee (%)c

1 (R)-4a toluene 40 48 <5
2 (R)-4b toluene 40 48 28 11
3 (R)-4c toluene 40 48 8 6
4 (R)-4d toluene 40 48
5 (R)-4e toluene 40 48 30 77
6 (R)-4f toluene 40 48 <5
7 (R)-4g toluene 40 48 <5
8 (R)-4h toluene 40 48 >95 89
9 (R)-4h DCM 40 24 >95 59
10 (R)-4h dioxane 40 48 77 81
11 (R)-4h MeCN 40 24 >95 9
12 (R)-4h EtOAc 40 48 >95 81
13 (R)-4h o-xylene 40 48 >95 88
14 (R)-4h mesitylene 40 48 >95 88
15 (R)-4h toluene 30 96 90 90
16 (R)-4h toluene 50 24 >95 89
17 (R)-4h toluene 60 12 >95 87
18d (R)-4h toluene 50 20 >95 89

aReactions were performed with 1a (0.10 mmol) and 2a (0.11 mmol)
in toluene (1.0 mL) using 5 mol % (R)-CPA as catalyst. bNMR yield
using 1,3,5-trimethoxybenzene as an internal standard. cDetermined
by HPLC. d50 mg of Na2SO4 was used.

Scheme 2. Substrate Scope of Isatins 2a

aConditions: indole 1a (0.20 mmol) and isatins 2 (0.22 mmol) in
toluene (2.0 mL) using 5 mol % (R)-4h as a catalyst at 50 °C.
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Next, the substrate scope for the enantioselective Pictet−
Spengler reaction of various 2-(1H-indol-7-yl)anilines 1 with
isatin 2 was explored under the standard conditions (Scheme
3). A range of indoles bearing different substituents on the

pyrrole ring, including an alkyl substituent, ester group, and
aryl substituent, were investigated, and dramatic effects were
observed (3bf−3hf). 2-Methylindole 1b offered spiro adduct
3bf in 99% yield, albeit with a moderate 63% ee, which might
be ascribed to the small steric hindrance at the C2 position of
indole. Indole 1c with a bulky t-butyl was well tolerated, and
product 3cf was isolated in 97% yield with 82% ee. With the
electron-withdrawing CO2Me, the C6 nucleophilicity of indole
1d decreased, and the desired annulation could not occur. To
our delight, 2-aryl-substituted 2-(1H-indol-7-yl)anilines 3e−3g
with various electron-donating or electron-withdrawing sub-
stituents underwent the reaction smoothly with isatin 2f to
afford the corresponding adducts 3ef−3gf in excellent yields
with excellent enantioselectivities. Diphenyl-substituted indole
1h was also tested, and the spiroindolin-2-one 3hf could be
obtained in 94% yield with 81% ee. The substituents at the
para position of the aniline moiety reduced the reactivity (3if,
3jf). With an electron-donating group, 2-(1H-indol-7-yl)-
aniline 1i gave 3if in 93% yield with 86% ee with a prolonged
reaction time. However, when 2-(1H-indol-7-yl)aniline 1j
bearing an electron-withdrawing chloro group was used,
product 3jf was achieved with a moderate 65% enantiose-
lectivity. In the absence of a substituent at the two- or three-

position of the indoles, the C6-functionalized polycyclic
products could be achieved in high yields, albeit with low
enantioselectivities (3ka, 3la). Indole 1m with a methyl
substituent in the benzene ring furnished the reaction in 48%
yield with poor enantioselectivity, which may be ascribed to
the steric hindrance (3ma).
To demonstrate the practicality of this chiral-phosphoric-

acid-catalyzed C6-selective Pictet−Spengler reaction, we
carried out a gram-scale experiment of 2-(1H-indol-7-yl)aniline
1a and isatin 2f (Scheme 4). Satisfyingly, the transformation

proceeded smoothly, affording the desired product 3af in 97%
yield with 91% ee using only 2.0% catalyst loading without any
erosion of yield or enantioselectivity.
To determine the absolute configuration of the products, we

conducted the synthetic transformation reaction (Scheme 5).

Treatment of (+)-3aa with iodomethane under basic
conditions and N-methylation of both the indole and analine
moieties provided (−)-4 in 96% yield with 87% ee. The
absolute configuration of (−)-4 was confirmed as S by X-ray
diffraction analysis after recrystallization. (See the Supporting
Information.) Therefore, the absolute configuration of product
(+)-3aa was unambiguously assigned as (S)-(+)-3aa.
To probe the mechanism of the C6-selective Pictet−

Spengler reaction, we performed a control experiment
(Scheme 6). When N-methyl-protected indole 1n was
subjected to the optimal reaction conditions, no annulated
product 3na was observed. The result clearly indicates that the
N-H of the indole moiety played a crucial role in both the

Scheme 3. Substrate Scope of 2-(1H-indol-7-yl)anilines 1a

aConditions: indoles 1 (0.20 mmol) and isatin 2f (0.22 mmol) in
toluene (2.0 mL) using 5 mol % (R)-4h as a catalyst at 50 °C.

Scheme 4. Gram-Scale Experiment

Scheme 5. Synthetic Transformation and Determination of
Absolute Configuration

Scheme 6. Control Experiment
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reactivity and the enantioselectivity, which is distinct from our
previously reported C3-selective Pictet−Spengler reaction.14c
On the basis of the above experimental results, we propose a

plausible reaction model to illustrate the stereochemistry of
catalytic products (Figure 1). In the presence of chiral

phosphoric acid (R)-4h, ketimine is generated from 2-(1H-
indol-7-yl)aniline 1a and isatin 2a via dehydration. The chiral
phosphoric acid serves as a bifunctional catalyst to activate
both the indole and ketimine moieties through hydrogen-
bonding interactions. The indole attacks preferentially from
the Re-face of the CN bond in the chiral environment to
afford the S-configured adduct.
In summary, the highly enantioselective Pictet−Spengler

reactions of 2-(1H-indol-7-yl)anilines and isatins for the
synthesis of novel C6-functionalized indole polycyclic com-
pounds have been demonstrated using chiral phosphoric acid
as a catalyst. This is the first catalytic asymmetric Pictet−
Spengler reaction on the benzene ring of indoles. The reaction
can proceed on the gram scale without any loss of yield or
enantioselectivity. Moreover, a plausible transition state was
proposed to explain the enantioselectivity control. Further
studies on the detailed reaction mechanism and the develop-
ment of new Pictet−Spengler reactions on the benzene of
indoles are in progress in our laboratory.
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