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Comprehensive Summary  

 

Optically active phthalides are prevalent in many natural and bioactive products. Herein, a novel dynamic kinetic resolution of isoben-
zofuranone derivatives through palladium-catalyzed asymmetric allylic alkylation has been developed to synthesize phthalide deriva-
tives bearing vicinal quaternary and tertiary stereocenters with high yields, showing excellent chemo-, enantio- and diastereoselectiv-
ity. Furthermore, gram-scale experiment underwent smoothly and the transformation of product could build a bridged bicyclic skele-
ton. 
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Background and Originality Content 

Isobenzofuranones, commonly termed as phthalides, are 
prevalently found in naturally occurring products and exhibit a 
myriad of biological activities,

[1]
 which also act as pragmatic 

building blocks in organic synthesis.
[2]

 For instance, 3-butylphthal-
ide (NBP)

[3]
 is a cardiovascular drug for the treatment of cerebral 

ischemia. It is also a natural antioxidant and has anticonvulsant 
activity. Herbaric acid

[4]
 has antibacterial property and alcyopte-

rosin E
[5]

 showed mild cytotoxicity toward human tumor cell lines. 
Chrysoarticulin C

[6]
 exhibited weak cytotoxicity against the K562 

and A549 cancer cell lines and was also moderately active against 
sortase A (Scheme 1). 

Scheme 1  Representative examples of natural phthalides 

 

In recent years, various elegant methods have been devel-
oped for the asymmetric catalytic synthesis of phthalides, involv-
ing metal,

[7]
 organic

[8]
 and biological catalysis.

[9]
 These reported 

literatures mainly focused on the enantioselective construction of 
isobenzofuranone framework. In contrast, it is rare to achieve 
enantioselective synthesis of phthalide derivatives based on this 
framework. Indubitably, the dynamic kinetic resolution (DKR)

[10]
 

has been demonstrated as a powerful tool. Hence, for the con-
struction of enantiopure phthalides, dynamic kinetic resolution of 
compounds bearing isobenzofuranone framework is effective. In 
2015, Liu and coworkers

[7f]
 developed DKR of phthalides through 

asymmetric transfer hydrogenation
[11]

 to construct 3-(2-hydroxy- 
2-arylethyl)isobenzofuran-1(3H)-one bearing 1,3-distereocenters 
with excellent enantioselectivities and acceptable diastereomeric 
ratios, which utilized the racemization through retro-oxa-Michael 
addition (Scheme 2a). Previously, our group made efforts in the 
dynamic kinetic resolution of substrates based on retro-oxa- 
Michael addition process.

[12]
 Among them, we have realized dy-

namic kinetic resolution of 2,3-disubstituted flavonoids via palla-
dium-catalyzed asymmetric allylic alkylation,

[13]
 and two contigu-

ous stereogenic centers were constructed on the endocyclic 
structure.

[12a]
 As is well known, it is more difficult to stereoselec-

tively build multiple stereocenters on the acyclic structure. Herein, 
utilizing retro-oxa-Michael addition process, we reported an effi-
cient dynamic kinetic resolution through asymmetric allylic allyla-
tion to provide a wide range of phthalide derivatives bearing two  

Scheme 2  Dynamic kinetic resolution of phthalide derivatives 

 

contiguous stereocenters (including an all-carbon quaternary ste-
reocenter) with high yields, excellent enantio- and diastereoselec-
tivities (Scheme 2b). 

Results and Discussion 

Encouraged by our antecedent work on retro-oxa-Michael ad-
dition,

[12a]
 we chose Pd2(dba)3/(R,R)-DACH-Naphthyl Trost Ligand 

(L1) as catalyst to investigate the asymmetric allylic alkylation 
between 2-substituted allyl carbonate (2a) and isobenzofuranone 
derivative (1a). Under this condition, the target product 3aa was 
obtained with only 24% yield and 5.0 : 1 dr. At the same time, 
there was also the generation of chemoselective sideproduct 4aa 
with 10% yield (Table 1, entry 1). We deem that chiral ligands may 
play a pivotal role in this alkylation reaction. Thus, the chiral 
ligand effect was initially examined (entries 2—6). Fortunately, the 
chemo- and diastereoselectivity of asymmetric allylic alkylation 
were excellent when the chiral spiroketal-based diphosphine 
SKPs

[14]
 were used, in which (R,R,R)-Ph-SKP L3 was optimal. Then, 

the different leaving groups of allyl reagents were investigated, 
among which allyl carbonate was superior to allyl acetate and allyl 
chloride (entries 7—8). Subsequently, the different solvents were 
tested (entries 9—12). It was found that toluene as the solvent 
afforded the desired product in 93% yield with > 20 : 1 dr and 79% 
ee. Next, triethylamine was used instead of 1,8-diazabicyclo- 
[5.4.0]undec-7-ene (DBU) as the base and found that the results 
of alkylation reaction were similar (entries 9 and 13). Inferring the 
base might not be necessary, asymmetric allylic alkylation without 
base was attempted, which furnished the desirable product in the 
identical yield with 80% ee (entry 14). Therefore, we chose not to 
add the base. Then, the palladium precursors were investigated, 
showing that Pd2(dba)3 was still better for the enantioselectivity 
compared with Pd(dba)2, [Pd(C3H5)Cl]2 and Pd(OAc)2 (entries 
15—17). Naturally, the temperature was decreased to further 
improve the stereoselectivity (entries 18—19). Reaction tem-
perature at ‒40 °C was determined to be the optimal, delivering 
the desired product with > 20 : 1 dr and 93% ee. Ultimately, the 
amount of ligand was decreased to 6.0 mol% and the optimal 
conditions were established in entry 20. In addition, we found 
that when 4aa reacted at 50 °C under above conditions, it can be 
completely converted to 3aa with 78% ee. 

After identifying the optimal conditions, the substrate scope 
of this methodology was evaluated. First of all, a range of allyl 
substrates were investigated as shown in Scheme 3. It was found 
that substituents on the allyl carbonates have a vast effect on the 
stereoselectivity. With simple allyl methyl carbonate (2b) as the 
electrophile, the alkylation reaction displayed a lower enantio-
selectivity (42% ee). Cinnamyl methyl carbonate (2c) performed 
very poorly, providing the corresponding product 3ac in 30% yield 
with only 4.0 : 1 dr and 24% ee for the major diastereoisomer. 
When the substituents on the 2-position of allyl methyl carbonate 
were tested, such as phenyl (2d) and methyl (2e), the reaction 
exhibited moderate enantioselectivity. 2-Benzyl substituted allyl 
substrates played an important role in the stereoselectivity. Ac-
cordingly, the different substituents on the aryl group of allyl sub-
strate (2f—j) were explored. When electron-withdrawing sub-
stituent (F) was introduced, the reactivity and diastereoselectivity 
was not diminished, but enantioselectivity slightly decreased to 
85%. When other substituents, such as methoxy (2g) and methyl 
on different positions (2h—j), were introduced, the reactivity 
would be affected and the reaction needed to be carried out at 
‒30 °C. 

Afterwards, the substrate scope was further investigated with 
a series of isobenzofuranone derivatives, using 2-benzylallyl 
methyl carbonate (2a) as the electrophile (Scheme 3). The effect 
of electron-withdrawing substituents of isobenzofuranone 
derivatives was first probed. It was found that isobenzofuranone  
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Table 1  Optimization of reaction conditionsa 

 

entry L LG solvent base [Pd] yield (%) of 4aab yield (%)of 3aab dr of 3aab ee (%) of 3aa (major isomer)c 

1 L1 OCO2Me PhCF3 DBU Pd2(dba)3 10 24 5.0 : 1 77 

2 L2 OCO2Me PhCF3 DBU Pd2(dba)3 9 21 4.3 : 1 17 

3 L3 OCO2Me PhCF3 DBU Pd2(dba)3 < 5 89 > 20 : 1 79 

4 L4 OCO2Me PhCF3 DBU Pd2(dba)3 < 5 88 ~20 : 1 78 

5 L5 OCO2Me PhCF3 DBU Pd2(dba)3 < 5 69 7.6 : 1 14 

6 L6 OCO2Me PhCF3 DBU Pd2(dba)3 < 5 36 5.0 : 1 16 

7 L6 OAc PhCF3 DBU Pd2(dba)3 < 5 47 ~20 : 1 78 

8 L6 Cl PhCF3 DBU Pd2(dba)3 < 5 73 ~20 : 1 78 

9 L3 OCO2Me toluene DBU Pd2(dba)3 < 5 93 > 20 : 1 79 

10 L3 OCO2Me THF DBU Pd2(dba)3 < 5 > 95 ~20 : 1 76 

11 L3 OCO2Me DCM DBU Pd2(dba)3 < 5 79 18.8 : 1 72 

12 L3 OCO2Me CH3CN DBU Pd2(dba)3 < 5 25 7.3 : 1 52 

13 L3 OCO2Me toluene Et3N Pd2(dba)3 < 5 > 95 > 20 : 1 78 

14 L3 OCO2Me toluene — Pd2(dba)3 < 5 > 95 > 20 : 1 80 

15 L3 OCO2Me toluene — Pd(dba)2 < 5 > 95 > 20 : 1 79 

16 L3 OCO2Me toluene — [Pd(C3H5)Cl]2 < 5 > 95 > 20 : 1 79 

17 L3 OCO2Me toluene — Pd(OAc)2 < 5 > 95 > 20 : 1 79 

18d L3 OCO2Me toluene — Pd2(dba)3 < 5 > 95 > 20 : 1 89 

19e L3 OCO2Me toluene — Pd2(dba)3 < 5 > 95 > 20 : 1 93 

20e,f L3 OCO2Me toluene — Pd2(dba)3 < 5 > 95 (96g) > 20 : 1 93 
a Reactions were carried out with 1a (0.10 mmol), 2 (1.5 eq.), [Pd] (5.0 mol%), L (7.5 mol%), base (1.0 eq.), solvent (1.0 mL), 5 Å MS (50 mg), 30 °C, 1—48 

h. b Yield and diastereomeric ratio were measured by analysis of 1H NMR spectra using 1,3,5-trimethoxybenzene as the internal standard. c Determined by 

chiral HPLC. d ‒20 °C instead of 30 °C. e ‒40 °C instead of 30 °C. f L3 (6.0 mol%). g Isolated yield for the reaction on 0.20 mmol scale and toluene (1.0 mL). 

compounds containing β-keto ester structure were better. Various 
alkoxycarbonyl groups were well tolerated in the reaction, such as 
ethoxycarbonyl (1b), benzyloxycarbonyl (1c) and tert-butoxycar-
bonyl (1d). When R

1
 was changed from methyl to ethyl (1e) or 

n-butyl (1f), the enantioselectivity was slightly improved, albeit a 
little lower reactivity resulting in the reaction conducted at ‒30 °C. 
When R

1
 was phenyl (1g), the chemoselectivity of this reaction 

was profoundly affected, delivering the sideproduct 4ga in 39% 
yield and the desired product 3ga in 51% yield with 82% ee. For 
isobenzofuranone compounds containing 1,3-dione structure, 
there was no change in enantioselectivity. However, for nucleo-
phile (1i), asymmetric allylic alkylation could only obtain 1.5 : 1 
diastereomeric ratio. Additionally, chemo- and diastereoselectivity 
of the alkylation reduced when R

2
 was phenyl (1j). When sub-

strate 1k bearing dimethylamino as R
2
 was employed, it was a pity 

that chemoselective sideproduct 4ka was generated in 87% yield 
and the desired 3ka was not detected. Due to the fact that 4aa 
could be converted to 3aa at 50 °C under standard conditions, we 
attempted to obtain the desired product 3ka at higher reaction 
temperature. However, no 3ka was also obtained at 50 °C and 
even at 80 °C. 

Furthermore, it was executed to screen substituents on aro-

matic ring of the isobenzofuranone derivatives 1. Halogen atoms 
such as F, Cl and Br on the C5 position of isobenzofuranone 
derivatives (1l—n) were compatible, and the reactivity and stere-
oselectivity of asymmetric allylic alkylation could be maintained. 
When electron-donating groups like methoxy and methyl (1o,p) 
were introduced, the alkylation reaction proceeded at ‒30 °C, 
which was the same as the substrates bearing methyl group on 
the C4 or C6 position (1q,r). Gladly, methyl group on the C7 posi-
tion of isobenzofuranone derivative was advantageous, and the 
corresponding product 3sa was obtained with 99% ee. In addition, 
using substrate bearing naphthalene for asymmetric allylic alkyla-
tion, the product 3ta could also be generated in 95% yield with 99% 
ee. Besides, to determine the absolute configuration of products, 
the X-ray crystallographic analysis evidenced that (+)-3ra was con-
firmed as (+)-(R,R)-3ra and the absolute configurations of all other 
products were assigned by analogy. 

To demonstrate the practicability of the above methodology, 
gram-scale reaction on 1e was executed under the corresponding 
condition, providing the product 3ea in 98% yield without loss of 
stereoselectivity (Scheme 4). Meanwhile, further derivatizations 
of compound 3ea were performed (Scheme 5). A tandem epoxi-
dation and acid-promoted intramolecular ring-opening reaction of   
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Scheme 3  Substrate scopesa
 

 
a Reactions were carried out with 1 (0.20 mmol), 2 (0.30 mmol), Pd2(dba)3 (2.5 mol%), L3 (6.0 mol%), toluene (1.0 mL), 5 Å MS (50 mg), ‒40 °C, 48 h. 
b ‒40 °C, 55 h. c ‒30 °C, 48 h. d ‒30 °C, 72 h. e ‒40 °C, 55 h then ‒20 °C, 40 h. 

Scheme 4  Gram-scale experiment 

 

3ea happened in the presence of m-chloroperbenzoic acid, deliv-
ering the bridged skeleton 5/5′ with 1.7 : 1 dr and maintained 
optical purity. Finally, oxidative cleavage of the terminal alkene 
with ozone produced the chiral ketone 6 in 88% yield with 96% ee. 

On the basis of the above experimental results and mecha-
nism on palladium-catalyzed allylic alkylation using allyl car-
bonates,

[15]
 a plausible mechanism was proposed in Scheme 6. For 

the stereoselective control, the enolate of the nucleophile ap-
proaches the (π-allyl)palladium-L3 complex by its Si face. 
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Scheme 5  Product derivatization 

 

Scheme 6  Plausible mechanism 

 

Conclusions 

In summary, we have successfully developed dynamic kinetic 
resolution of isobenzofuranone derivatives through palladium- 
catalyzed asymmetric allylic alkylation, based on fast retro-oxa- 
Michael addition as the racemization step. It is highly efficient to 
construct a series of enantioenriched phthalide derivatives bear-
ing vicinal tertiary and all-carbon quaternary stereocenters. This 
strategy has high chemo-, enantio- and diastereoselectivity, 
showing good functional group tolerance and scale-up reactivity. 
In addition, the bridged bicyclic skeleton could be built by the 
transformation of product. 

Experimental 

General procedure for the palladium-catalyzed asymmetric 
allylic alkylation 

The metal precursor Pd2(dba)3 (0.005 mmol, 4.6 mg, 2.5 
mol%), (R,R,R)-Ph-SKP ligand (L3) (0.012 mmol, 7.9 mg, 6.0 mol%) 
and toluene (0.5 mL) were placed in a dried Schlenk tube under 
nitrogen atmosphere. The mixture was stirred at 30 °C for 30 min. 
Then the mixture was cooled to ‒40 or ‒30 °C. Thereafter, the 
isobenzofuranone derivatives 1 (0.20 mmol) and 5 Å MS (50 mg) 
were added. Sequentially, allyl carbonates 2 (0.30 mmol) and tol-
uene (0.5 mL) were added slowly. The mixture was stirred at ‒40 
or ‒30 °C for 48—72 h. After the completion of the reaction, 
without any treatment, the reaction mixture was directly purified 
by column chromatography on silica gel using hexanes/ethyl ace-
tate (50/1—5/1) as eluent to give the desirable chiral products 3. 
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