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ABSTRACT: Rhodium(III)-catalyzed triple C—H bond activation of o s
mol% [Cp*RhCly],

aryl enaminones was achieved to access naphtho[1,8-bc]pyrans by @) ,HN@ 2eau U, (0,

oxidative annulation to internal alkynes. 1-Naphthols might be formed HH )

as the only products, depending on the steric and/or electronic

environment around the aroyl moiety of the aryl enaminones or the

H R—=—R"

N DCE, 110°C, 24 h
F

® Triple C-H bond activation ® Product diversity

® Diverse transformations of products

electronic impact from the alkynes. With propargyl alcohols as the

masked terminal alkynes, aryl enaminones underwent rhodium(III)- or rhodium(I)-catalyzed internal alkenyl C—H bond activation
to afford functionalized but-2-ene-1,4-diones. The resultant naphtho[1,8-bc]pyrans are highly fluorescent and can be further
transformed by chlorination, bromination, and difluoromethylation, demonstrating potential practicability of the synthetic protocol.

Naphtho[1,8-bc]pyran is an important structural motif in some
natural and synthetic functional molecules with biological' and
optoelectronic properties,” such as Mansonone F and Biflorin."
Its construction has been seldom reported because such a
process usually requires multistep prefunctionalization and
deprotection, and inaccessible reactants.” C—H bond activa-
tion of arenes followed by annulation with alkynes has been
considered as a useful route to arene-based complex organic
compounds.”® For example, Jiao et al. documented synthesis
of N-heterocycles® through C—H functionalization of arenes
with alkynes under transition-metal complex catalysis. Wang et
al. reported the construction of N-alkylindoles’® and
phosphindolium salts”” by means of rhodium(III) and
copper(II) catalysis, and the Glorius group developed
manganese(I)- and rhodium(III)-catalyzed annulation pro-
cesses of arenes with functionalized alkynesga’b (Scheme 1a).
Miura, and Ackermann et al. developed a strategy to form
naphtho[1,8-bc]pyrans by using 1-naphthols as the building
blocks, and rhodium(II1)** and ruthenium (1) complexes as
the catalysts. Double C—H activation was realized in
palladium(II) catalyzed oxidative cycloaromatization of biaryls
with alkynes.” The Choudhury lab achieved rhodium(III)-
catalyzed, NHC-driven cascade annulation of arenes with
alkynes to access benzo[ijlimidazo[2,1,5-de]quinolizinium
architectures via sequential double aryl C—H activation.'’
Wang and coauthors built 1-naphthylamines through rhodium-
(IIT)-catalyzed annulation of f-enaminonitriles with alkynes via
double aryl/alkenyl C—H activation, and also furnished
naphtho[1,8-bc]pyridines by modification of the reaction
conditions (Scheme 1b)."" By means of a similar catalytic
system, Wang et al. also achieved cyanoacetyl-directed,
Rh(III)-catalyzed cascade oxidative annulation of benzoylace-
tonitriles with internal alkynes, offering naphtho[1,8-bc]pyrans
through a stepwise annulation via 1-naphthol intermediates.'”
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Scheme 1. Transition-Metal-Catalyzed Annulation of
Arenes with Alkynes through C—H Activation
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In a similar fashion, Tang et al. accomplished polyannulation of
benzoylacetonitrile with internal diynes."’

During the ongoing investigation of transition-metal-
catalyzed C—H functionalization of internal alkenes,'* we
found that a push—pull electronic effect of the substituents at
two termini of an alkenyl C=C bond facilitates polarization of
the alkenyl C=C moiety, and thus enhances the reactivity of
an internal alkenyl C—H bond which is usually stubborn for
direct C—C bond formation. We recently achieved rhodium-
(IIT)-catalyzed intermolecular cross-couplings of arenes with
alkenes or allenes through aryl C—H activation." Li'* and
Lou'® et al. documented rhodium(III)-catalyzed annulations
of a-benzoyl ketene dithioacetals to diazo compounds for the
synthesis of naphthalenones and indanones, respectively, in
which double aryl C—H/internal alkenyl C—H bond activation
was involved. We thus reasonably envisioned that triple aryl
C—H/internal alkenyl C—H bonds in polarized internal
alkenes, that is, aryl enaminones, might be concurrently
involved in a cascade annulation reaction with alkynes. Herein,
we disclose a rhodium(III)-catalyzed cascade annulation
strategy of aryl enaminones with internal alkynes through
triple aryl C—H/internal alkenyl C—H bond activation to
access multisubstituted naphtho[1,8-bc]pyrans (Scheme 1c).

Initially, the reaction of (Z)-1-phenyl-2-(pyrrolo[1,2-a]-
quinoxalin-4(SH)-ylidene )ethan-1-one (1a), with 1,2-dipheny-
lethyne (2a), was conducted to optimize the reaction
conditions (see the Supporting Information (SI) for details).
With 2 mol % [Cp*RhCL,], as the catalyst and 2 equiv of
Cu(OAc), as the oxidant, the 1:2.5 molar ratio reaction of la
and 2a in 1,2-dichloroethane (DCE) proceeded at 110 °C for
24 h under a nitrogen atmosphere to give the target double
annulation product, i.e., naphtho[1,8-bc]pyran 3a, in 88%
isolated yield.

Under the optimal conditions, the scope of aryl enaminones
1 was explored (Table 1). Substituents such as methyl, ethyl,
methoxy, trifluomethyl, and fluoro were tolerated at the 4-
position of the a-aroyl moiety in 1. In the same manner to
access 3a, the target products 3b—3f were obtained in 71—-96%
yields. In the case of using 4-CF;-functionalizd aryl enaminone
le, the highest yield (96%) was reached for 3e, while the 4-F
group diminished the yield of 3f to 71%. 3-Methoxy-
substituted aryl enaminone 1g also efficiently reacted with 1a
to afford 3g (84%). Unexpectedly, 3-CFs-functionalizd aryl
enaminone 1h could not undergo double annulation with 2a to
form 3h (0%), and only a monoannulation occurred to give 1-
naphthol 4h (18%) as the detectable product, which is
presumably attributed to both the strong electron-withdrawing
capability and steric effect of the 3-CF; group obviously
diminished the reactivity of 1h. However, 3-F- and 3-Br-
functionalized aryl enaminones 1i and 1j reacted well with 2a,
affording 3i (84%) and 3j (54%), respectively. 2-Naphthyl
enaminone 1k reacted efficiently to produce 3k (81%) under
the same conditions. When a 2-methyl or 2-trifluoromethyl
group is installed in the aryol moiety of 1, the reaction could
only give the monoannulation products 4 in low to moderate
yields. Thus, 1-naphthol 41 (R = 2-Me) and 4m (R = 2-CF;)
were obtained in 25—38% yields without generation of
compounds 31 and 3m. 2-Halogen-functionalized aryl
enaminones In (2-Cl) and 1o (2-Br) did not react with 2a
to form a detectable amount of both the monoannulation
products 4n (0%) and 40 (0%). It is noted that the molecular
structures of 3 and 4 were further confirmed by the X-ray
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Table 1. Scope of Aryl Enaminones (1)“”

'
o)
Q=<

Ph

Ph Ph

(23)

OH
_2mol% [CpRACll, _ @ @ @
H H )/ N 2 equiv Cu(OAc), Q O
P DCE, 110°C, 24 h ol en /

PH Ph/

Ph, Ph

3¢ (R = Et), 79%
3d (R = OMe), 90%
3e (R = CF3), 96%
3f(R=F), 71%

3i (X =F), 84%

31 (X =Br), 54%
@ LD
Ph / PH  Ph /
41 (R = Me), 25% 4n (X = Cl), 0%
4m (R = CF3), 38% 40 (X =Br), 0%

“Conditions: 1 (0.3 mmol), 2a (0.75 mmol), [Cp*RhCL], (0.006
mmol), Cu(OAc), (0.6 mmol), DCE (3 mL), 110 °C, N,, 24 h.
PIsolated yields. “Yield for the gram-scale preparation.

single crystallographic structural analysis of 3b and 4h,
respectively (see the SI for details).

Next, the protocol generality was investigated by carrying
out the reaction of la with diverse internal alkynes 2 (Table
2). Diarylalkynes bearing 4-methyl (2b), 4-fluoro (2d), or 4-
chloro (2e) groups efficiently underwent the reaction to afford
the target O-heterocycles 3p (85%), 3r (82%), and 3s (83%),
whereas 4-trifluoromethyl groups in alkyne 2c led to a 57%
yield of 3q. 3-Methyl in 1,2-di(m-tolyl)ethyne (2f) also
facilitated the formation of 3t (87%), while both 3-Cl and 3-
Br-functionalized diaryl alkynes (2g and 2h) reacted with 1a
less efficiently to give 3u (75%) and 3v (73%), respectively.
Notably, the 1:1 molar ratio reaction of 1a and 2f afforded 3t
(42%) as the only product, and no detectable amount of 1-
naphthol 4t was obtained, suggesting that the product diversity
is independent of the reactant ratios. ortho-Substituents such as
2-methyl and 2-chloro exhibited a remarkable negative steric
effect such that both 1,2-di(o-tolyl)ethyne (2i) and 1,2-di(o-
chlorophenyl)ethyne (2j) exhibited no reactivity to 1a. To our
delight, 1,2-di(a-thienyl)ethyne (2k) reacted with la to
produce naphtho[1,8-bc]pyran 3w (81%), establishing an O-,
N-, and S-heterocyclic system. Unsymmetric alkyl aryl alkynes
1-phenylpropyne (21) and 1-phenylbutyne (2m) could also be
applied in the reaction, resulting in 3x (87%) and 3y (77%),
respectively. (CH,);-skipped 1,7-diarylhepta-1,6-diynes only
behaved as monoalkynes, and their reactions with la formed
3z (31%) from diyne 20 (Ar = Ph), 3z1 (30%) from diyne 2p
(Ar = 4-MeC¢H,), and 322 (26%) from diyne 2q (Ar = 4-
CIC¢H,), respectively. However, 1,4-diphenylbuta-1,3-diyne
(2r) exhibited no reactivity to la due to the possible steric
effect. Internal dialkyl alkyne oct-4-yne (2s) showed a
reactivity much lower than its diaryl alkyne analogs, giving
3z3 in 37% yield, and dimethyl acetylenedicarboxylate (2t)
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Table 2. Scope of Internal Alkynes (2)“’b

H R! : R?

o OH

HN@ 2 mol% [Cp RhClyl, O C @
H H N 2 equiv Cu(OAc), O @ O
I DCE, 110 °C, N, 24 h
7

1a 3

R R

3p (R = Me), 85%
3q (R=CF3), 57%

3r(X=F), 82%

3s (X=Cl), 83% 3t, 42%°

87%

3u (X = Cl), 75%
3v (x Br), 73%

3x (R=Me),
3y (R=Et), 77%

3z (Ar=Ph), 31%

321 (Ar = 4-MeCgHy), 30%

322 (Ar = 4-CICqH,), 26%
“Conditions: 1a (0.3 mmol), 2 (0.75 mmol), [Cp*RhCL,], (0.006
mmol), Cu(OAc), (0.6 mmol), DCE (3 mL), 110 °C, N,, 24 h.
bIsolated yields. “Using 2f (0.3 mmol).

323, 37%

afforded 1-naphthol 4z4 (44%) as the only product. It should
be noted that terminal alkynes and 1-trimethylsilyl-based
internal alkynes did not react with aryl enaminones 1 to form
the target products 3 and 4 under the stated conditions.

As noted above, terminal alkynes are not suitable for the
Rh(III)-catalyzed double annulation process, but internal alkyl
aryl and diaryl alkynes behave efficiently for the desired
annulation reaction, which encouraged us to further explore
the surrogates of terminal alkynes to extend the present
synthetic protocol generality. Unfortunately, a hydroxyl-
functionalized terminal alkyne, that is, propargyl alcohol,
could not interact with 1a to undergo a similar multiple C—H
functionalization process. Propargyl alcohols have usually been
applied for alkyne formation and cyclization,'” in which they
act as terminal alkyne precursors.'® It was found that
functionalized propargyl alcohols of type S, a class of masked
terminal alkynes, could be enabled to react with aryl
enaminones 1 under the modified conditions by using DMF
solvent (Table 3; see the SI for details). In the presence of 1
mol % [Cp*RhCl,], catalyst at 120 °C, Sa reacted with 1a to
give alkenyl C—H functionalization product 6a in 76% yield,
instead of the desired double annulation product of type 3. In a
similar fashion, 1,1,3-triphenylprop-2-yn-1-ol (5a’) and 24-
diphenylbut-3-yn-2-ol (5a”) were treated with 1a to afford the
same target product 6a (38—42%), revealing a negative steric
effect from the C(sp*)-phenyl group(s) (Table 3). Substituted
phenyl-, 1-naphthyl-, and 1-thienyl-functionalized enaminones
reacted with Sa to form the desired products 6b—6x in 23—
64% vyields. Substituents at the 2- or 4-position of the aryl
moiety in 2-methyl-4-arylbut-3-yn-2-ols (5) affected the
reaction efficiency of compounds § and 1a, leading to products
6b—6s, 6v, and 6w in 23—55% yields. 3-Methyl and 3-methoxy
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Table 3. Reaction of Enaminones (1) with Masked Terminal

Alkynes (5)**
1 mol% o]
[CP*RCI], R' N@
o 4

3 2.5 equiv Cu(OAc), N
masked

DMF, 120 °C, 2 h
terminal alkynes R?:R%*C=0
1 6

%@ THP Lo

6a (from R? = R® = Me), 76% (92%)” 6b (R = Me), 26% (49%)? PH @
(1159, 71%)°? 6c (R = Et), 45% (54%)? d

6a (from R? = R® = Ph), 38% (78%)" 6d (R = CF3), 38% (56%)7 6 (R = OMe), 230% (7oa%)d

Sa (from R? = Me, R® = Ph), 42% (83%) se (R = CI), 53% (59%)¢ 69 (R = CFy), 51% (81%)

B PP & -0

6h (X = F), 57% (71%)? 6k (R = Me), 49% (72%)
6i (X = Cl), 64% (87%) 61 (R = CF3), 60% (93%)7
6j (X = Br), 46% (78%)" 6m (R = F), 48% (68%)"

o o
Ph N@ Ph N@
4 4
0 o
/ N /
Y

!

R 6p (R = Me), 42% (70%)%
6q (R = OMe), 32% (64%)"
6r (R = CF3), 29% (59%)¢
6s (R =F), 55% (68%)%

o]

6t (R = Me), 56% (40%)
6u (R = OMe), 61% (50%)?

6v (R= OMe), 23% (26%)°

6w (R = CF3), 35% (43%)? 6x, 38% (41%)7 6y, 0% (24%)?

“Conditions: 1 (0.3 mmol), 5§ (0.9 mmol), [Cp*RhCL], (0.003
mmol), Cu(OAc), (0.7S mmol), DMF (3 mL), 120 °C, N,, 2 h.
bIsolated yields. “Yield for the gram-scale preparation. dUsing 1 mol
% [Rh(COD)CIl], as the catalyst.

groups facilitated the reaction to give 6t (56%) and 6u (61%),
respectively. a-Thienyl-based propargyl alcohol reacted with
la to afford 6x (38%), but p-thienyl-propargyl alcohol
exhibited no reactivity. It is noteworthy that [Rh(COD)Cl],
exhibited a much better catalytic activity than the [Cp*RhCl,],
catalyst for this type of transformations (see the SI for details).
Notably, 1 mol % [Rh(COD)Cl], promoted the reaction of 5a
and la to form 6a in an excellent yield (92%). The Rh(I)
catalyst also facilitated the reactions of Sa’ and Sa” with 1a,
leading to 6a (78—83%). In other cases of using the
[Rh(COD)CI], catalyst, 4-positioned methyl, ethyl, trifluor-
omethyl, and chloro in the aroyl moieties of 1 exhibited a
negative impact on the formation of products 6b—6e (49—
59%). 3-Methoxy, trifluoromethyl, and halogens (F, Cl, and
Br) showed a diminished substituent effect on the yields of 6f—
6j (70—87%). The reaction of 2-methyl and 2-fluoro-aryl
enaminones 1 with Sa also proceeded smoothly to give the
target products 6k (72%) and 6m (68%), respectively.
Moreover, 2-trifluoromethyl facilitated the reaction to generate
61 in an excellent yield (93%). 1-Naphthyl exhibited a negative
steric effect on the yield of 6n (41%). a-Thienyl enaminone
efficiently reacted with Sa to form 60 (73%). However, alkyl
enaminones could not undergo the desired reaction to afford
the same type of products. Substituted 2-methyl-4-arylbut-3-
yn-2-ols showed various reactivities to 1a, and their reactions
resulted in 6p—6w (26—70%) with the negative ortho- > meta-
> para-substituent effect. Notably, 2-methyl-4-(2-thienyl)but-
3-yn-2-ol and 2-methyl-4-(3-thienyl)but-3-yn-2-ol reacted with
1a less efficiently, affording the target products 6x (41%) and
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6y (24%), respectively. The molecular structures of com-
pounds 6 were further confirmed by the X-ray crystal single
structural analysis of the corresponding brominated derivative
of 6a (Scheme 2).

Scheme 2. Derivatization of Compounds 3a and 6a

(a) Derivatization of 3a
Ph. Ph

(iv)

C o \\ chlorination difluoromethylation o \\ CF,COOEt
N,
Q 4 (i or (ii) O N
i \
N—@ bromination N—@
Ph P Ph

7 (X=Cl), 73%
8 (X = Br), 53%," 77%"

9, 45%

X-ray structure of 8

o} ) v o
Ph N (i) (v) Ph N
O, 4 chlorination difluoromethylation o) 4
/ 6a /
N v B N
PH RNAX dibromination g s~ Ph /~CF,COOEt

10 (R=H, X = Cl), 48% 12,83%
11 (R=X = Br), 44%

(b) Derivatization of 6a

X-ray structure of 11

It is noted that, with replacement of the tricyclic N-
heterocyclic functionality at one terminus of the alkenyl C=C
bond in aryl enaminones 1 with NHPh/SMe or NHPh/Me
groups, the resultant aryl enaminones could not interact with 2
or § to form the corresponding naphtho[1,8-bc]pyrans, 1-
naphthols, or products of type 6 (see the SI for details). 1-
Naphthol 4h was treated with 1,2-diphenylethyne (2a) under
the optimal conditions as shown in Table 1, but the reaction
gave no detectable amount of the desired 3h, which suggests
that free I-naphthols of type 4 may not be the necessary
intermediates to enable the studied double annulation process.

The scale-up preparation of naphtho[1,8-bc]pyran and
butenyl diketone derivatives was exemplified by the gram-
scale synthesis of 3a (81%) and 6a (71%) (Tables 1 and 3).
Naphtho[1,8-bc]pyran 3a was subject to the chlorination,"”
bromination,'”*" and diﬂuoromethylation21 conditions to form
compounds 7 (73%), 8 (53—77%), and 9 (45%), respectively
(Scheme 2a). In a similar fashion, compound 6a was
transformed to chlorinated 10 (48%), dibrominated 11
(44%), and difluoromethylated 12 (83%) (Scheme 2b).
These results have demonstrated the potential applicability of
the present synthetic protocol. The mono- and dibromination
products 8 and 11 were structurally identified by the X-ray
single crystal structural analysis. It is noteworthy that
compounds 3 are structurally featured with two O- and N-
tricycle functionalities, which are bestowed with specific
fluorescence (see the SI).

In order to probe into the C—H activation mechanism,
kinetic isotope effect (KIE) experiments were performed by
means of the reactions of 1a as well as its deuterated forms
1a[D-1] and 1a[D-2]'*" with 2a under the standard
conditions, respectively (see the SI). Primary (ky/kp = 3.3)
and a secondary (ky/kp = 1.1) hydrogen isotope effects were
observed, suggesting that cleavage of the aryl C—H bonds
instead of the alkenyl C—H bond in the aryl enaminones 1
might be involved in the rate-limiting step of the overall
catalytic cycle (eqs 1 and 2). Plausible mechanisms are
proposed for the Rh(IIT)- and Rh(I)-catalyzed processes in the
SI file.

In summary, Rh(III)-catalyzed triple C—H activation of aryl
enaminones was efficiently achieved to access naphtho[1,8-
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bc]pyrans by oxidative annulation with internal alkynes. The
target products can be diversely transformed, and some of
them have exhibited promising fluorescence properties. The
present protocol provides a concise route to multisubstituted
naphtho[1,8-bc]pyran derivatives.
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