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ABSTRACT: Despite the significant success of metal-H-catalyzed
hydroamination methodologies, considerable limitations still exist
in the selective hydroamination of alkynes, especially for terminal
alkynes. Herein, we develop a highly efficient NiH catalytic system
that activates readily available alkynes for a cascade hydro-
amination/cyclization reaction with anthranils. This mild, opera-
tionally simple protocol is amenable to a wide array of alkynes
including terminal and internal, aryl and alkyl, electron-deficient and electron-rich ones, delivering structurally diverse quinolines in
useful to excellent yields (>80 examples, up to 93% yield). The utility of this procedure is exhibited in the late-stage functionalization
of several natural products and in the concise synthesis of an antitumor molecule graveolinine and a triplex DNA intercalator.
Preliminary mechanistic experiments suggest an alkenylnickel-mediated alkyne hydroamination and an intramolecular cyclization/
aromatization of putative enamine intermediates.
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Within the field of synthetic organic chemistry, the
efficient and selective construction of C−N bonds is of

critical importance because of the presence of nitrogen-
containing compounds in many natural products,1 medicinally
relevant molecules,2 and functional materials.3 Apart from the
state-of-the-art C−N cross-coupling,4 traditional hydroamina-
tion of alkenes and alkynes enabled by rare-earth and noble
metals has been extensively investigated for decades (Scheme
1a, method A).5 In recent years, a polarity-reversed strategy
that utilizes metal hydrides in combination with an electro-
philic aminating reagent has emerged as a powerful means to
prepare complex amines because of attractive advantages such
as low cost, mild conditions, as well as high regio- and
stereoselectivity (Scheme 1a, method B).6 Pioneered by
Buchwald,7 Miura,8 Hirano, and others,9 CuH-catalyzed
hydroamination of alkenes has been developed for the
formation of sp3 C−N bonds. However, to the best of our
knowledge, metal-H-mediated alkyne hydroamination for sp2

C−N bond formation has been largely unsuccessful and
remains as a challenging task in this field. This is probably
attributed to the fast protodemetalation of the in-situ-
generated alkenylcopper intermediate, which may result in
the semireduction of alkynes to alkenes.10 Moreover, the
instability of enamine products is also a crucial issue that
hinders the advancement on alkyne hydroamination. The
group of Buchwald has achieved an interesting CuH-catalyzed
hydroamination of internal aryl alkynes (Scheme 1b, path A).11

However, in this catalytic system, alkylamines are competitively
formed via a sequential semireduction/hydroamination of
alkynes (Scheme 1b, path B). A similar chemoselectivity has
also been recently observed in a cobalt-catalyzed system

reported by Lu et al.12a Miura and Hirano et al. developed Zr/
Cu sequential catalysis for the formal hydroamination of
terminal aryl alkynes in two steps.12b

Compared with the widespread success of CuH catalytic
systems in alkene functionalization, NiH catalysis is more
commonly used in the hydrofunctionalization of alkynes
probably due to the slow protodemetalation of alkenylnickel
intermediates.13 Recently, Chang and Seo achieved the first
NiH-catalyzed hydroamidation of alkynes with dioxazolones
for the selective synthesis of enamides.14 Given the intrinsic
reactivity of NiH complexes,15 we recently questioned whether
a NiH catalytic system could be applied to further expand the
research on hydroamination of simple alkynes which is a long-
standing challenge in Cu or Co catalytic systems. The rational
choice of an appropriate electrophilic amine reagent is critical
for the success of this type of reaction. On the one hand, the
aminating reagent should be stable under reductive conditions.
On the other hand, the reaction of the aminating reagent with
alkenylnickel intermediates should completely outcompete the
protodemetalation process. In addition, the in-situ-generated
enamine product should also be stable, or it can be rapidly
trapped by electrophiles for the assembly of other high-value
N-containing molecules.
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Anthranils are stable and readily available, which have been
used as versatile aminating reagents in many C−N formation
reactions.16 Moreover, they are usually regarded as polarity-
reversed 2-carbonyl anilines, which may provide a possibility
for the trapping of enamine intermediates by the carbonyl
group.17 For instance, Knochel et al. have recently disclosed a
convenient Co-catalyzed cross-coupling of alkenylzinc pivalates
and anthranils for the synthesis of quinolines.17b In addition,
anthranils were successfully applied in a copper-catalyzed
hydroamination of vinylarenes.18 Inspired by these precedents
and our ongoing interests in anthranil chemistry16,17a and N-
heterocycle synthesis,19 herein, we envisaged to develop a new
alkyne hydroamination strategy based on an efficient NiH-
catalyzed polarity-reversed reaction mode with the use of
anthranils as electrophilic aminating sources. The specific
mechanistic details of our proposed NiH-catalyzed hydro-
amination/cyclization cascade are outlined in Scheme 1c. In
the presence of hydrosilane, the reactive NiH-catalyst is in-situ-
generated, which would readily react with alkynes to form the

key alkenylnickel species A. The resulting intermediate A is
expected to couple with anthranils to produce enamine
intermediates B with an adjacent carbonyl group. Subsequent
intramolecular cyclization/aromatization of enamine B would
afford the desired quinoline products. The key challenges for
this cascade reaction can be attributed to the following points:
(1) the compatibility of anthranils in the NiH catalytic system;
(2) semihydrogenation of alkynes (Scheme 1c, path A);10−12

(3) the reduction of the carbonyl group by the NiH species
before intramolecular cyclization (Scheme 1c, path B).18 We
believe that the rational combination of the Ni catalyst and
reductant may provide a solution to these challenges.
Quinolines are one of the most prevalent N-heterocycles in

pharmaceuticals, natural products, and materials (Figure 1).20

Traditional methods often rely on harsh reaction conditions
and specialized substrates,21 which largely limits their
applications in practical synthesis. We developed a novel
NiH catalytic system that activates readily available alkynes for
a cascade hydroamination/cyclization reaction with anthranils,
furnishing a wide range of quinolines in good yields. The
remarkable features of this protocol include mild conditions,
simple operation, excellent regioselectivity, and broad substrate
scope, providing a general and convenient platform for the
construction of quinolines.
To test the feasibility of this hydroamination/cyclization

reaction, phenylacetylene (1a) and benzo[c]isoxazole (2a)
were chosen as the model substrates, and various catalysts,
ligands, hydrosilanes, and solvents were systematically

Scheme 1. Hydroamination Reaction for C−N Bond
Formation and Reaction Design

Figure 1. Representative biologically important quinolines.

Table 1. Summary of the Effects of Reaction Parameters

aStandard conditions: 1a (0.2 mmol), 2a (0.22 mmol), Ni(BF4)2·
6H2O (5 mol %), L1 (5.5 mol %), Me(OEt)2SiH (3.0 equiv), DMA
(1.0 mL) under an argon atmosphere at room temperature for 12 h.
DMA refers to N,N-dimethylacetamide. bYields determined by 1H
NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.
cThe yield in parentheses is the isolated yield. d0.2 mmol proton
source was added.
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investigated (Table 1). We first tested the commonly used
copper catalysts to promote the proposed reaction. However,
these copper catalysts were found to be ineffective for this
reaction (see Table S1 for the screening of copper catalysts). In
CuH catalytic systems, byproducts 2-aminobenzaldehyde and
styrene were observed via the competitive reduction of

anthranil 2a and phenylacetylene, respectively. To our delight,
nickel catalysts exhibit remarkable activity for the formation of
quinoline product 3a. The yield of 3a can be achieved in 90%
using Ni(BF4)2·6H2O (5 mol %) as the catalyst, 6,6′-dimethyl-
2,2′-bipyridine (L1) as the ligand, and Me(OEt)2SiH as the
hydride source in dimethylacetamide (DMA) at room

Scheme 2. Scope of Alkynesa

aReactions were run with 1 (0.3 mmol) and 2 (0.33 mmol) under standard reaction conditions at room temperature (for terminal alkynes) or 40
°C (for internal alkynes) for 12 h. Reported yields are the isolated ones. bTrimethyl(arylethynyl)silane was used as the substrate. c3-Alkyl
substituted isomer was detected by crude 1H NMR, and the ratio of 2-alkyl quinoline 3z:3-alkyl quinoline 3z′ is 20:1.
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temperature (entry 1). Notably, 2-phenylquinoline was formed
with exclusive regioselectivity presumably because of the
stabilization of the alkenylnickel species by an adjacent phenyl
group.11a The screening of reaction solvents indicated that
other solvents such as N, N′-dimethylpropyleneurea (DMPU),
N-methyl-2-pyrrolidone (NMP), or dimethylformamide
(DMF) led to diminished yields (entry 2). The counter
anion of nickel salt has a significant influence on the reaction
outcome. Ni(BF4)2·6H2O proved to be the optimal catalyst,
while NiBr2, Ni(acac)2·2H2O, or Ni(OAc)2 resulted in
decreased yields (entry 4). The strong cationic nickel center
in Ni(BF4)2·6H2O may promote the initial NiH formation step
because of the weak coordination of BF4

− anions. Although the
ligand is not indispensable for this reaction to proceed, the use
of 6,6′-dimethyl-2,2′-bipyridine (L1) as a supporting ligand can
improve the yield (entries 5 and 6). Me(OEt)2SiH (3.0 equiv)
proved to be the most efficient hydride source, and other
tested silanes resulted in decreased yields (entry 8). Base
additives were found to have detrimental influence on the
reaction (entry 9). As expected, control experiments
demonstrated that the nickel catalyst and silane were essential
for this reaction (entries 3 and 7). In addition, the influence of
proton sources has been investigated. This cascade reaction
proceeded smoothly when 1.0 equivalent of H2O, EtOH, or
iPrOH was added to the reaction mixture (entry 10).
Moreover, product 3a can be obtained in good yields even
with the addition of 10 equiv H2O in the system (entry 11).
These results strongly support that the expected hydro-
amination completely outcompetes the semireduction process
in this NiH catalytic system. Compared with the easy
protonation of well-established alkenylcopper intermediates,
the protodemetalation of the alkenylnickel species is
unfavorable because of the relatively high energy barrier.14

As shown in Scheme 2, a large variety of alkynes including
terminal and internal, electron-deficient and electron-rich, aryl
and alkyl ones were compatible in this reaction. Under the
optimized conditions, alkynes bearing different functional

groups such as fluoro (3b), chloro (3c), bromo (3d), methoxy
(3e), methylthio (3g), amino (3h), ester (3k), trifluoromethyl
(3l), cyano (3m), sulfone (3n), and even free hydroxyl group
(3as) were tolerated well. A series of valuable bis(hetero)aryls
(3p−3v) can be obtained in good yields, which are privileged
π-conjugated structural cores in biologically active molecules
and organic functional materials.22 Remarkably, terminal
aliphatic alkynes reacted smoothly with anthranils to give the
desired 2-alkyl quinolines in moderate yields (3w−3z). The
high regioselectivity of aliphatic alkynes is probably attributed
to the stability of the α-alkenyl nickel species.13e Ethyl
propiolate afforded the desired ethyl quinoline-2-carboxylate
(3aa) in 46% yield with excellent regioselectivity. Diary-
lacetylenes are successfully converted into expected products in
generally good to excellent yields (3ab−3am). Oct-4-yne
(3an) and cyclododecyne (3ao and 3ap) participated in this
transformation with a high reaction efficiency. For unsym-
metrical internal alkynes bearing an aryl substituent (3aq−
3at), these reactions proceed in high regioselectivity with C−N
bond formation occurring adjacent to the aryl group.11a The
electron-deficient alkynes including alkynyl esters (3au and
3av), alkynamide (3aw), alkynone (3ax−3az), and electron-
rich ones such as alkynyl ether (3ba) and ynamide (3bb) are
compatible with this catalytic system, producing the corre-
sponding quinolines in good yields (58−84%). Significantly,
1,3-diethynylbenzene and 1,3,5-triethynylbenzene also proved
to be suitable, furnishing the expected products 3bc and 3bd in
80% and 67% yields, respectively.
We next turned our attention to the scope of anthranils in

this new NiH catalytic system. As shown in Scheme 3, various
substituents including F (3be), Cl (3bf), Br (3bg), OMe
(3bh), benzyl (3bi), CF3 (3bj), and acetal (3bm) were well
tolerated, giving rise to the desired polysubstituted quinolines
in good yields (61−88%). Notably, 3-aryl- and alkyl-
substituted anthranils were found to participate readily in
this transformation (3bn−3bp, 3bu, and 3bv).
To further exemplify the utility of this protocol, we applied

this NiH-catalyzed hydroamination/cyclization cascade reac-
tion in the late-stage modification of several readily available
natural products and pharmaceutical derivatives. As outlined in
Scheme 4a, the alkynes derived from some bioactive molecules
such as estrone (3bw), vitamin E (3bx), nerol (3by), menthol
(3bz), cholesterol (3ca), ibuprofen (3cb), and galactose (3cc)
reacted smoothly with anthranils, delivering high-function-
alized quinolines in synthetically useful yields. The success of
these reactions demonstrated the synthetic potential of this
methodology in organic chemistry and industrial applications.
Alkynes can be easily accessed from aryl bromide via

Sonogashira coupling.23 The gram-scale experiment involving
2-bromo-9H-fluoren-9-one as the starting material proceeded
efficiently, furnishing the corresponding quinoline 3cd in 72%
(0.92 g) yield (Scheme 4b). In addition, transition-metal-
catalyzed C−H alkynylation has been well established to
prepare alkynes.24 We can start from the commercially
available acetophenone to synthesize the bioactive quinoline
3ce via a sequential iridium-catalyzed ortho-C−H alkynylation
and NiH-mediated hydroamination/cyclization cascade
(Scheme 4c). Moreover, this mild NiH catalytic system can
be successfully applied to the concise synthesis of biologically
active compounds. For instance, graveolinine, which exhibits
antibacterial, spasmolytic, and antitumor activities, can be
concisely synthesized from 3o (Scheme 4d).25 2-(2-Naphthyl)-
quinoline derivative 3ci, that has been designed to target

Scheme 3. Scope of Anthranilsa

aReactions were run with 1 (0.3 mmol) and 2 (0.33 mmol) under
standard reaction conditions. Reported yields are the isolated ones.
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triplex DNA, was efficiently constructed from product 3v via
two simple operations (Scheme 4e).26

To understand the mechanism, a series of control experi-
ments were conducted (Scheme 5). Anthranils have been

Scheme 4. Late-Stage Modification of Natural Products and Pharmaceutical Derivatives and Synthetic Applications

Scheme 5. Lewis Acid-Catalyzed Pathway (a), Testing the
Possible Intermediate (b), and Hydroamination of Styrene
(c)

Scheme 6. Deuteration with Ph2SiD2 (a), Kinetic Isotope
Effect (b), and Stepwise Stoichiometric Reaction (c)
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reported to undergo Diels−Alder (DA) reaction with
enamines in the presence of TiCl4 as a catalyst.27 To probe
this possibility, Lewis acids including TiCl4, Zn(OAc)2, and
In(OTf)3 were tested; however, all of these catalysts turned
out to be ineffective for this reaction in the presence or
absence of a ligand (Scheme 5a). Therefore, a tandem process,
involving a Lewis-acid-catalyzed DA reaction of anthranils and
alkynes, and subsequent reduction by silane, could be
excluded. Although a small amount of 2-aminobenzaldehyde
(6) can be detected in the reaction, it is not likely an
intermediate for this reaction because no desired product was
detected when 2-aminobenzaldehyde was subjected to the
reaction system (Scheme 5b). Notably, under the current
conditions, the reaction of styrene 7 and anthranil 2a
proceeded smoothly to give the hydroamination product 8a
in good yields (Scheme 5c). This important result confirms
that anthranils can serve as efficient electrophilic aminating
reagents in NiH-catalyzed hydroamination reactions. In
addition, the aldehyde group is left intact in the reductive
system, opening an opportunity for the NiH-catalyzed
hydroamination/cycloisomerization cascade reaction of al-
kynes with anthranils.
Moreover, an isotope labeling experiment was conducted

with the use of Ph2SiD2 as the reductant (Scheme 6a). As a
result, 56% deuterium incorporation at the 3-position of
compound 3a was observed, which indicated that deuterium is
provided by silyldeuteride from the generated NiD species.
The partly loss of deuterium may occur in the intramolecular
condensation step in which a hydrogen or deuterium is
eliminated. In addition, there are no significant kinetic isotope
effects in parallel experiments, which indicates that the Si-H
bond cleavage is not likely to be involved in the rate-
determining step (Scheme 6b). The intermediary of the
alkenylnickel species was demonstrated by the success of a
stepwise reaction of 1aa and 2a (Scheme 6c) (see the
Supporting Information for details).
According to the above mentioned results and previous

studies, a plausible NiH-catalytic cycle is proposed in Scheme
7. First, a LNiH species is generated from the reaction of
Ni(BF4)2·6H2O, Me(OEt)2SiH, and ligand.14,15 Then, alkyne
insertion occurs with high regioselectivity to give reactive
alkenylnickel intermediate A′13,14 that further undergoes

oxidative insertion into the N−O bond of anthranils, giving
rise to species B′ and its resonance structure C′.28 The
subsequent reductive elimination of B′ affords the key enamine
intermediate D′. The resulting intermediate D′ then reacts
with Me(OEt)2SiH to deliver intermediate E′ with the
regeneration of an active NiH catalyst for the next catalytic
cycle. It should be noted that the presence of H2O may help
release the Ni catalyst from intermediate D′ and enhance the
generation of the active NiH species.14 Finally, the
intermediate E′ undergoes intramolecular cyclization to deliver
the desired quinoline product.
In summary, an efficient NiH-catalyzed hydroamination/

cyclization cascade of alkynes and anthranils has been
developed, which opens up a convenient route for the
synthesis of various highly substituted quinolines. This new
protocol features good regioselectivity, mild reaction con-
ditions, simple operation, and broad substrate scope. Beyond
the synthetic application displayed herein, we anticipate that
this protocol can be widely used in a concise synthesis of other
valuable targets. Moreover, the success of NiH catalysis in
alkyne hydroamination may stimulate the rapid development
of new catalytic systems for the transformation of simple
alkynes into various high-value compounds.
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