DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Literature Report 1

Total Synthesis of Yuzurine-type Alkaloid Daphgraciline

Reporter: Bao-Qian Zhao Checker: Tong Niu
Date: 2023-01-04

Li, L.-X.; Min, L.; Li, C.-C. J. Am. Chem. Soc. 2022, 144, 18823

CV of Prof．Chuang－Chuang Li（李闯创）

Research：

－Development of novel synthetic methodology
\square Total synthesis of biological activity natural products

Education \＆Professional Experience：

－1997－2001 B．S．，China Agricultural University
－2001－2006 Ph．D．，Peking University
－2006－2008 Postdoctoral，The Scripps Research Institute（TSRI）
－2008－2012 Associate Professor，Peking University
－2013－now Professor，Southern University of Science and Technology

Contents

2 Total Synthesis of Daphgraciline (2)

3 Synthesis of Key Chiral Compound (+)-7
4) Summary

Introduction

First Isolated by Yamamura (山村) in 1980

- Multiple Stereocenters
- Unusual Spiro Tetrahydropyran
- [6-7-5-5-6] Pentacyclic Core
- Unique Azabicyclo[4.3.1] Ring System

Yamamura, S.; Lamberton, J. A.; Niwa, M. Chem. Lett. 1980, 9, 393

Type II [5+2] Cycloaddition

Mei, C.-J.; Liu, X.; Li, C.-C. Angew. Chem. Int. Ed. 2015, 54, 1754

Achmatowicz Rearrangement

Plutschack, M. B.; Seeberger, P. H. Org. Lett. 2017, 19, 30

Ti(III)-Mediated Reductive Epoxide Coupling

RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986

Benzilic Acid Rearrangement

Form Name Reactions

Retrosynthetic Analysis

Stage 1--Synthesis of 7

Stage 1--Synthesis of 7

Stage 1--Synthesis of 7

Stage 2--Synthesis of Tetracyclic Core 16

Stage 2--Synthesis of Tetracyclic Core 16

Stage 2--Synthesis of Tetracyclic Core 16

Stage 3--Total Synthesis of Daphgraciline (2)

Retrosynthetic Analysis

Retrosynthetic Analysis

Synthesis of Chiral Intermediate (+)-7

Synthesis of Chiral Intermediate (+)-7

Summary

\checkmark A Mild Type II [5+2] Cycloaddition
\checkmark Low Valent Ti-mediated Reductive Epoxide Coupling
\checkmark IMDA Reaction Followed by Benzilic Acid-type Rearrangement
\checkmark First Total Synthesis of (+/-)-2: 17 Steps, 0.5\% Overall Yield

Writing Strategies

\square The First Paragraph

The Importance of Alkaloid

The Synthetic Challenge of Daphgraciline

Main Content of This Work

Some yuzurine-type alkaloids have shown interesting cytotoxic activity against the murine lymphoma L1210 cells and pesticidal activity against brine shrimp.

Additionally, 2 contains two sterically hindered tetrasubstituted double bonds (C9-10, C14-15) and a C2 hemiketal moiety. The synthesis of 2 therefore poses a formidable challenge.

In our ongoing efforts to achieve total syntheses of bioactive natural products with bridged ring systems, we have completed the first total synthesis of (+/-)-2.

Writing Strategies

- The Last Paragraph

Summary of This Work

Elucidate The Highlights

We have achieved the first total synthesis of (+/-)-(2), which also represents the first example of the synthesis of Daphniphyllum yuzurine-type alkaloids.

This work is the first demonstration of using a type II [5+2] cycloaddition or Ti-mediated reductive epoxide coupling in alkaloid synthesis.

This methodology could be used to synthesize other members of yuzurine-type subfamily of alkaloids and their analogs.

Representative Examples

＞Sequential（依次发生的）Li－Br exchanges of dibromofuran 11 with n－BuLi were achieved followed by sequential additions of BOMCI，and formalde－ hyde to afford 12 in 73\％yield ．
＞After extensive investigation（经过广泛的调查），mild and optimized conditions for the desired cleavage of the C11－O bond were identified ．
＞On the basis of（基于．．．．．．）our previous work，a Schenck ene reaction of $\mathbf{2 1}$ using tetraphenylporphyrin（TPP）as the photosensitizer afforded the alcohol $\mathbf{2 2}$ with the desired synthetically challenging C9＝C10 tetrasub－ stituted double bond．

Acknowledgement

Dr. Bo Wu, Tong Niu

 Thank for Your Attentions!