Literature Report III

Enantioselective Total Synthesis of (–)-Caulamidine A

Reporter: Bao-Qian Zhao Checker: Tong Niu

Zhu, Z.; Maimone, T. J. J. Am. Chem. Soc. 2023, 145, 14215

2023.10.09

CV of Prof. Thomas. J. Maimone

Research:

Natural product total synthesis

D Synthetic organic methodology development

Education & Professional Experience:

2004 B.S., UC, Berkeley

2009 Ph.D., The Scripps Research Institute

2009-2012 NIH Postdoctoral Fellow, MIT

2012- Assistant Professor, UC, Berkeley

Contents

Introduction

2 Enantioselective Total Synthesis of (–)-Caulamidine A

Isolation of their first congener—2004

Inhibited plasmodium falciparum at low micromolar concentrations

Hexahydro-2,6-naphthyridine core

Fused to a dihydroindole-derived and tetrahydroquinoline-based ring

Milanowski, D. J.; Gustafson, K. R.; McMahon, J. B. J. Nat. Prod. 2004, 67, 70

Introduction

Retrosynthetic Analysis of (–)-Caulamidine A

Stage 1

Enantioselective Total Synthesis of (-)-Caulamidine A Me Me Me Me MeO₂C Me CO₂Me CO₂Me NaClO₂, NaH₂PO₄ CI CI °OCO₂Me С Me 2-methyl-2-butene [Pd(prenyl)Cl]₂ THF Cs₂CO₃, PhMe 96% н н Ph 14 15 84% ee O = (R)-BINOL L1 MeNH₂, CaCl₂ 67% MeOH 74% Me Me Me Me O₃, DCM ۶O CONHMe Me₃OBF₄, DTBMP then add DMS CI CI CI DCM recrystallize OMe 0 Ο 78% Ĥ Н 17a (R = H) 92%ee 18a (R = H) 65% 16 NCS, MeCN 18b (R = Cl) 72% ► 17b (R = CI) 92%

Lindgren–Kraus Oxidation

Enantioselective Total Synthesis of (-)-Caulamidine A Me Me Me =0 CI :O O R R MeNH₂, Ti(OⁱPr)₄ LDA, THF CI R CI MeOH NHMe then add OMe ,OTf TfO Mé **13a** (R = H) 93% **12a** (R = H) 40% 18a (R = H) 65% 18b (R = Cl) 72% 13b (R = Cl) 91% 12b (R = Cl) 58% single diastereomer Me Me Me CI CI LDA, THF R CI PBu₃, PhMe O then add HMPA MWI ÌΟ Mé Mé Ń₃ Mé **12a** (R = H) 40% 20a (R = H) 75% **10a** (R = H) 74% 12b (R = Cl) 58% 20b (R = Cl) 54% 10b (R = Cl) 94% single diastereomer single diastereomer

Staudinger-Aza-Wittig Reaction

Stage 3

Entry	Conditions	Reaction Products ^a
1	TFA, Et ₃ SiH, DCM	10b
2	H ₂ , PtO ₂ , AcOH/EtOAc	10b, 9 (14%), 1 (6%)
3	Fe ₂ (ox) ₃ , NaBH ₄ , EtOH/H ₂ O	10b
4	Co(acac) ₂ , Et ₃ SiH, 1,4-CHD, TBHP, ^{<i>n</i>} PrOH, air	10b
5	Fe(acac) ₃ , PhSiH ₃ , PhSH, EtOH	10b
6	Mn(dpm) ₃ , PhSiH ₃ , TBHP, [/] PrOH	10b
Reaction Co	ndition: ^a Yields determined by 1H NMR analysis. ^b Mn ^{III} (5 mol	%), silane (2 eq.), TBHP (2 eq.).

Reaction Condition: ^aYields determined by 1H NMR analysis. ^bMn^{III} (5 mol%), silane (2 eq.), TBHP (2 eq.). ^cMn^{III} (2 eq.), silane (2 eq.), silane (2 eq.), PhSH (2 eq.). ^eMn^{III} (10 eq.), silane (10 eq.), PhSH (10 eq.), B(ⁱPrO)₃ (2 eq.), with aq. NH₄OH workup. ^fIsolated yield.

Entry	Conditions	Reaction Products ^a	
6	Mn(dpm) ₃ , PhSiH ₃ , TBHP, ^{<i>i</i>} PrOH	10b	
7 ^b	Mn(dpm) ₃ , Ph(ⁱ PrO)SiH ₂ , TBHP, ⁱ PrOH	10b, 1 (trace)	
8 ^c	Mn(dpm) ₃ , Ph(ⁱ PrO)SiH ₂ , TBHP, ⁱ PrOH	10b (21%), 1 (15%) 22 (16%), 23 (9%), 24 (7%)	
9 ^d	Mn(dpm) ₃ , Ph(<i>i</i> PrO)SiH ₂ , PhSH, <i>i</i> PrOH	10b (62%), 1 (12%)	
10 ^e	Mn(dpm) ₃ , Ph([/] PrO)SiH ₂ , PhSH, [/] PrOH , B([/] PrO) ₃	10b (24%), 1 (49%) ^f	
Reaction Condition: ^a Yields determined by 1H NMR analysis. ^b Mn ^{III} (5 mol%), silane (2 eq.), TBHP (2 eq.). ^c Mn ^{III} (2 eq.), silane			

(4 eq.), TBHP (2 eq.). a Mn^{III} (2 eq.), silane (2 eq.), PhSH (2 eq.). e Mn^{III} (10 eq.), silane (10 eq.), PhSH (10 eq.), B(l PrO)₃ (2 eq.), with aq. NH₄OH workup. l Isolated yield.

Conditions	Results
	<mark>C12</mark> 0% D
Ph(′PrO)SiH _{2,} PhSD, CD ₃ OD	C11 0% D
	C25 0% D
	<mark>C12</mark> 97% D
Ph(′PrO)SiD _{2,} PhSH, ′PrOH	C11 94% D
	C25 0% D

Summary

- ✓ Pd-Catalyzed Asymmetric Prenylation
- ✓ Diastereoselective Ketone-Amidine Annulation Reaction
- ✓ Highly Diastereoselective Hydrogen Atom Transfer
- ✓ First Total Synthesis of (–)-1: 11 Steps, 3.2% Overall Yield

□ The First Paragraph

Source and **Bioactivities of** Caulamidine A The Synthetic **Challenge** of **Caulamidine A** Main Content of This Work

- 1 were initially isolated as minor constituents from extracts of the Caulibugula intermis by Gustafson in 2004. The natural product inhibited chloroquine-sensitive and -resistant strains of Plasmodium falciparum at low micromolar concentrations with little cytotoxicity to human cells.
- ✓ While this hexacyclic scaffold is reminiscent of the dimeric cyclotryptamine alkaloids, caulamidines are neither symmetric nor dimeric due to the presence of a single additional carbon atom (C22) of unknown biosynthetic origins.
- Herein, we explore elements of this blueprint, culminating in the first total synthesis of 1 in 11 steps, rigorously confirming both its structure and its absolute configuration.

The Last Paragraph

In summary, we have developed the first total synthesis of the structurally unique antimalarial alkaloid caulamidine A in 11 steps, thus confirming its mysterious and elusive structure.

Highlights of the Current Method

- An enantioselective prenylation highlights the rapid formation of an enantioenriched spirocyclic oxindole in only four steps from commercial materials. A glycol bistriflate-mediated annulation reaction then quickly constructs the hexahydro-2,6-naphthyridine core with complete diastereoselectivity.
- A one-pot azide reduction or cyclization forges the caulamidine core in 10 steps, setting the stage for a diastereoselective HAT hydrogenation to form the key neopentylic chlorine stereocenter of the target.

Representative Examples

- ✓ While this hexacyclic scaffold is reminiscent (adj. 使人联想的) of the dimeric cyclotryptamine alkaloids, caulamidines are neither symmetric nor dimeric due to the presence of a single additional carbon atom of unknown biosynthetic origins.
- ✓ Given the possibility that the Lewis basic nitrogens in **10b** interfere with the manganese complexes formed in this reaction, we included B(OⁱPr)₃ to the reaction as a **sacrificial** (*adj*. 牺牲的) Lewis acid and found it to be beneficial to the reaction outcome.
- A glycol bistriflate-mediated annulation reaction then quickly constructs the hexahydro-2,6-naphthyridine core with complete diastereoselectivity.
 Given the importance of spirocyclic oxindoles in drug discovery, we feel this maneuver (*n*. 策略,妙招) may have uses in other contexts.

Thanks for your attentions!