Literature Report VI

Palladium-Catalyzed Atroposelective Kinetic C-H Olefination and Allylation for the Synthesis of C-B Axial Chirality

Reporter: Gao-Wei Wang

Checker: Li-Xia Liu

Date: 2023-11-27

Xu, J.; Qiu, W.; Zhang, X.; Wu, Z.; Zhang, Z.; Yang, K.; Song, Q.

Angew. Chem. Int. Ed. 2023, e202313388

CV of Prof. Qiuling Song (宋秋玲)

Background:

- 1994-1998 B.S., Zhengzhou University
- 1998-2001 M.S., Peking University (Prof. Zhenfeng Xi)
- 2002-2006 Ph.D., Princeton University (Prof. Robert A Pascal)
- 2007-2011 Researcher/Project Director, U.S. Pharmaceutical Company
- 2012-2023 Associate Professor/Professor, Huaqiao University
- 2023-Now Professor, Fuzhou University

Research:

- Organoboron chemistry
- Organic fluorine chemistry
- Radical chemistry and bioactive molecular synthetic chemistry

Contents

- 1 Introduction
- Palladium-Catalyzed Atroposelective Kinetic C-H Olefination and Allylation
- 3 Summary

Introduction

The synthesis of 1,2-azaborines

Ashe, A. J.; Fang, X. Org. Lett. 2000, 2, 2089-2091

The synthesis of 1,2-azaborines

Liu, X.; Cui, C. *J. Org. Chem.* **2015**, *80*, 3737-3744 Davies, G. H. M.; Molander, G. A. *J. Org. Chem.* **2017**, *82*, 549-555

The late-stage functionalization of 1,2-azaborines

Nucleophilic substitution at boron atom

Baggett, A. W.; Liu, S.-Y. J. Am. Chem. Soc. 2017, 139, 15259-15264

B-X bond activation

Morita, T.; Nakamura, H. Angew. Chem. Int. Ed. 2022, 61, e202113558

Electrophilic substitution at nitrogen atom

Lamm, A. N.; Liu, S.-Y. Angew. Chem. Int. Ed. 2011, 50, 8157-8160

C-H functionalizations

Electrophilic aromatic substitution

Zhang, Y.; Fang, X. J. Org. Chem. 2017, 82, 12877-12887

Transition metal-catalyzed C-H functionalization

Baggett, A. W.; Liu, S.-Y. J. Am. Chem. Soc. 2015, 137, 5536-5541

Davies, G. H. M.; Molander, G. A. J. Org. Chem. 2017, 82, 8072-8084

Project synopsis

Challenges:

- ➤ Most C-H functionalization reactions involve oxidants, and fragile C-B bond may not be compatible
- ➤ The catalytic asymmetric synthesis of C-B axial chirality is more challenge due to the innate lower rotational barrier

Optimization of reaction conditions

Entry	variation from the "standard conditions"	(<i>S</i>)-3a		(<i>R</i>)-1a		S
		Yield (%)	Ee (%)	Yield (%)	Ee (%)	
1	none	47	94	45	97	136
2	L2 instead of L1	0	-	95	-	1
3	L3 instead of L1	55	24	42	74	3.2
4	L4 instead of L1	44	0	55	0	-
5	AgCl instead of Ag ₂ CO ₃	10	87	86	10	16
6	AgOAc instead of Ag ₂ CO ₃	31	82	58	30	14
7	Et ₂ O instead of ^t BuOH	10	70	73	7	6
8	^t BuOH 2 mL instead of ^t BuOH 4 mL	38	90	45	97	79

Scope of 1,2-benzazaborines

3a, 47%, 94% ee **1a**, 45%, 97% ee C = 51%, S = 136, 18 h

3b, 43%, 93% ee **1b**, 45%, 96% ee C = 51%, S = 108, 120 h

3c, 42%, 94% ee **1c**, 45%, 94% ee C = 50%, S = 115, 60 h

3d, 40%, 94% ee **1d**, 43%, 90% ee C = 49%, S = 100, 40 h

3e, 47%, 91% ee **1e**, 45%, 94% ee C = 51%, S = 75, 18 h

3f, 40%, 91% ee **1f**, 45%, 95% ee C = 51%, S = 79, 72 h

3g, 47%, 94% ee **1g**, 40%, 95% ee C = 55%, S = 121, 120 h

3h, 43%, 94% ee **1h**, 44%, 91% ee C = 49%, S = 103, 72 h

3i, 44%, 94% ee **1i**, 42%, 91% ee C = 49%, S = 103, 48 h

3j, 41%, 94% ee **1j**, 45%, 93% ee C = 50%, S = 110, 32 h

3k, 41%, 92% ee **1k**, 39%, 93% ee C = 50%, S = 82, 122 h

3I, 47%, 93% ee **1I**, 45%, 93% ee C = 50%, S = 94, 12 h

3m, 41%, 90% ee **1m**, 45%, 98% ee C = 52%, S = 87, 18 h

3n, trace **1n,** 95%, rac

3o, 42%, 96% ee **1o**, 41%, 96% ee C = 50%. S = 194, 52 h

3p, 42%, 96% ee **1p**, 41%, 94% ee C = 49%, S = 175, 52 h

R = OMe, 3q, n.r. R = Ph₂(O)P, 3r, trace

Scope of olefins

1a. 45%. 92% ee C = 49%, S = 106, 60 h

3u, 37%, 93% ee 1a. 42%. 91% ee C = 49%, S = 88, 18 h

3v, 47%, 93% ee 1a, 45%, 91% ee C = 49%, S = 88, 93 h

3w, 47%, 94% ee 1a, 45%, 93% ee C = 50%, S = 110, 18 h

3x, 37%, 94% ee 1a. 40%. 94% ee C = 50%, S = 115, 48 h

3y, 38%, 96% ee 1a, 43%, 92% ee C = 51%, S = 94, 38 h

3aa, 37%, 92% ee 1a, 41%, 94% ee C = 51%, S = 85, 20 h

3ab, 47%, 92% ee 1a, 45%, 95% ee C = 51%, S = 89, 17 h

3ac, 37%, 91% ee 1a, 43%, 94% ee C = 51%, S = 75, 18 h

3ad, 39%, 87% ee 1a, 41%, 91% ee C = 51%, S = 45, 96 h

3ae, 38%, 91% ee 1a, 40%, 93% ee C = 51%, S = 72, 18 h

3af, 40%, 87% ee 1a, 40%, 98% ee C = 53%, S = 65, 48 h

3ag, 42%, 94% ee 1a, 45%, 93% ee C = 50%, S = 110, 118 h

3ah, 32%, 93% ee 1a, 41%, 93% ee C = 50%, S = 94, 62 h

3ai, 28%, 90% ee 1a, 40%, 90% ee C = 50%, S = 58, 97 h

3aj, 37%, 98% ee 1a, 42%, 94% ee C = 49%, S = 354, 48 h

3ak, 35%, 95% ee 1a, 43%, 91% ee C = 49%, S = 124, 48 h

3al. 33%, 87% ee 1a. 45%. 90% ee C = 51%, S = 44, 36 h

Late-stage modification of complex molecules

Scale-up preparation and transformations

Evaluation of the axially chiral P, S-ligand

Mechanistic studies

Proposed mechanism

Summary

Writing strategy

☐ The First Paragraph

1,2-氮杂硼烷的 性质及其应用

1,2-氮杂硼烷的 合成及后期修饰

引出本文工作

- ✓ BN-heterocycles, derived from the replacement of a C=C bond with a B-N bond, can maintain aromatic character as electronic isosteres of arenes that expand the aromatic chemical space. 1,2-Azaborines, one of BN-heterocycles, have attracted considerable interest due to its unique properties and relatively high stability, which are prominent in functional materials and ligands.
- ✓ To Due to their wide applications, many efforts have focused on the synthesis of 1,2-azaborines. To meet continually growing demand on complex 1,2-azaborine motifs, considerable efforts have been devoted to the late stage functionalization of simple 1,2-azaborines
- ✓ Herein, we report the Pd(II)/MPAA-catalyzed atroposelective C-H olefination and allylation of 1,2-benzazaborines. This transformation achieves a kinetic resolution of 2-aryl-1,2-benzazaborines, thus representing a novel and straight-forward route to construct C-B axial chirality.

Writing Strategy

☐ The Last Paragraph

总结工作

本文亮点

展望

- ✓ In conclusion, the atroposelective C-H olefination and al-allylation reactions of 1,2-benzazaborines have been developed as novel and straightforward routes to prepare challenging C-B axial chirality.
- ✓ For This transformation features kinetic resolution, broad substrate scope, high atroposelectivity (S factor up to 354), and excellent stereoselectivity (complete Z selectivity).
- ✓ The potential value of this reaction was further demonstrated by
 the diversified transformations of two kinds of C-B axially chiral
 2-aryl- 1,2-benzazaborines. We believe that this research will not
 only enrich the late-stage functionalization of 1,2-azaborines, but
 also provide an avenue to prepare significant chiral 1,2azaborines.

Representative examples

- ✓ Their 1,2-Azaborines, one of BN-heterocycles, have attracted considerable interest due to its unique properties and relatively high stability, which are prominent in functional materials and ligands. (adj, 杰出的)
- ✓ From the very beginning, we realized that a suitable DG is the key to the success of this atroposelective C H functionalization reactions of 1,2-benzazaborines. (从一开始…)
- ✓ The potential value of this reaction was further demonstrated by the diversified transformations of two kinds of C B axially chiral 2-aryl-1,2-benzazaborines. (用于文章最后的展望)

Acknowledgment

Thanks for your attention !