Literature Report 6

Direct Enantioselective α-C–H Conjugate Addition of Propargylamines to α,β-Unsaturated Ketones *via* Carbonyl Catalysis

Reporter: Hao-Dong Chen Checker: Yan-Jiang Yu Date: 2024-10-21

Zhang, R.; Xu, J.; Liu, S.; Si, S.; Chen, J.; Wang, L.; Chen, W.-W.; Zhao, B. J. Am. Chem. Soc. 2024, 146, 25927

CV of Prof. Baoguo Zhao (赵宝国)

Education & Experience:

□ 1992-1996 B.S., Wuhan University

1999-2002 M.S., Nanjing University

2003-2006 Ph.D., Shanghai Institute of Organic Chemistry

2006-2011 Postdoc., Colorado State University

D 2011-Present Professor, Shanghai Normal University

Research:

- Biomimetic Asymmetric Catalysis
- Biomimetic Total Synthesis
- Development of New Reaction

3

Representative Chiral Ketone and Chiral Aldehyde Catalysts

Wen, W.; Guo, Q.-X. Acc. Chem. Res. 2024, 57, 776

Chiral Ketones for Catalytic Asymmetric Epoxidation

Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 1997, 119, 11224

Chiral Aldehydes as Tethering Catalyst

McDonald, M. J.; Hesp, C. R.; Schiooer, D. J.; Pesant, M.; Beauchemin, A. M. Chem. Eur. J. 2013, 19, 2597

Chiral Aldehydes for Catalytic Asymmetric *a*-Functionalization of Primary Amines

Xu, B.; Shi, L.-L.; Zhang, Y.-Z.; Wu, Z.-J.; Fu, L.-N.; Luo, C.-Q.; Peng, Y.-G.; Guo, Q.-X. Chem. Sci. 2014, 5, 1988

Vitamin B₆ Family

Mozzarelli, A.; Bettati, S. Chem. Rec. 2006, 6, 275

Vitamin B₆ Mediated Biological Transformations

Xiao, X.; Zhao, B. Acc. Chem. Res. 2023, 56, 1097

Representative Vitamin B₆ Based Catalysts

Xiao, X.; Zhao, B. Acc. Chem. Res. 2023, 56, 1097

Asymmetric Biomimetic Carbonyl Catalysis

Chen, J.; Gong, X.; Li, J.; Li, Y.; Ma, J.; Hou, C.; Zhao, G.; Yuan, W.; Zhao, B. Science 2018, 360, 1438

Asymmetric Biomimetic Carbonyl Catalysis

Asymmetric Biomimetic Carbonyl Catalysis

Project Synopsis

Optimization of the Reaction Conditions

Ph 1a	^_NH₂ +	Ph Ph 2a	4 (10 mol%) NaOH (1 equiv Solvent (0.3 mL H ₂ O, 35 °C	.) -) Ph	N Ph B 3a		
Entry	4	Solvent	Yield (%)	Dr	Ee (%)		
1	4a	DCM	41	10:1	83		
2	4a	Hexane	80	>20:1	81		
3 ^b	-	Hexane	-	-	-	№Он	ОН
4	4b	Hexane	61	19:1	-69	(<i>R</i>)-4c	(R)-4d
5	4c	Hexane	55	>20:1	39	N_Et	
6	4d	Hexane	42	>20:1	66		
7	4e	Hexane	51	5:1	94	№Он	N OH
8	4f	Hexane	55	>20:1	98	(<i>R</i>)-4e	(<i>R</i>)-4f
9	4g	Hexane	45	>20:1	95		
10	4h	Hexane	50	>20:1	98		

mL) at 35 °C for 24 h unless otherwise stated. The ee values were determined by chiral HPLC analysis. The dr values were determined by ¹H NMR. ^bOnly *N*-addition product was observed. ^c2 equivalents of **1a**. ^d20 μ L of H₂O. ^e80 μ L of H₂O.

(R)-**4h**

(R)-**4g**

Optimization of the Reaction Conditions

	Ph H_2 + O Ph Ph Ph Ph $2a$		4f (10 mol%) Base (x equiv.) Solvent (0.3 mL) H₂O, 35 °C		Ph Ph Ph 3a	
Entry	Solvent	Base (eq.)	H ₂ Ο (μL)	Yield (%)	Dr	Ee (%)
11	Hexane	NaOH (1.0)	40	55	>20:1	98
12	Toluene	NaOH (1.0)	40	44	>20:1	98
13	THF	NaOH (1.0)	40	35	>20:1	92
14	Hexane	NaOH (0.5)	40	72	>20:1	98
15	Hexane	LiOH (0.5)	40	57	>20:1	98
16	Hexane	KOH (0.5)	40	70	13:1	98
17	Hexane	CsOH (0.5)	40	68	10:1	98
18 ^c	Hexane	NaOH (0.5)	40	83	>20:1	98
19 ^c	Hexane	NaOH (0.5)	20	70	19:1	97
20 ^c	Hexane	NaOH (0.5)	80	86	>20:1	98

^aReaction conditions: **1a** (0.15 mmol), **2a** (0.10 mmol), **4** (0.010mmol), H₂O (40 μ L) and base (0.10 mmol) in solvent (0.30 mL) at 35 °C for 24 h unless otherwise stated. The ee values were determined by chiral HPLC analysis. The dr values were determined by ¹H NMR. ^bOnly *N*-addition product was observed. ^c2 equivalents of **1a**.

Substrate Scope

Substrate Scope

Substrate Scope

Synthetic Applications

Synthetic Applications

Mechanistic Investigation: Impact of Water

-				
1	H ₂ Ο (0 μL)	-	-	-
2	Bu ₄ NCI (0.2 eq.), H ₂ O (0 μL)	trace	-	-
3 ^b	18-Crown-6 (0.2 eq.), H ₂ O (0 μL)	-	-	-
4	H ₂ Ο (10 μL)	trace	-	-
5	H ₂ O (20 μL)	23	>20:1	92
6	H ₂ Ο (40 μL)	40	>20:1	92
7	H ₂ O (60 <i>µ</i> L)	49	>20:1	92

^aThe reactions were carried out with **1a** (0.20 mmol, 2.0 equiv.), **2a** (0.10 mmol, 1.0 equiv.), NaOH (0.05 mmol, 0.5 equiv.), (*R*)-**4f** (0.01 mmol, 10 mol%) and additive in THF (0.3 mL) at 35 °C for 24 h unless otherwise stated. Isolated yields were based on **2a**. The ee values were determined by chiral HPLC analysis. The dr values were determined by crude ¹H NMR. ^{*b*}KOH (0.2 equiv.) was employed instead of NaOH.

Mechanistic Investigation: KIE Studies

Proposed Reaction Mechanism

Summary

> Mild Reaction Conditions > Broad Substrate Scope

> Outstanding Diastereo- and Excellent Enantioselectivities

首段写作思路

末段写作思路

- Second, the classical N-addition may disrupt the desired α-C conjugate addition.
 (disrupt, v. 中断, 扰乱)
- The synthetic transformations of products 3a and 3ab are depicted in Scheme 3.
 (depict, v. 描述, 描绘)
- For the step from intermediate 13 to 14, control experiments indicated that hydrolysis dominated the process and amine exchange between 13 and 1 played a negligible role for the conversion. (negligible, adj. 微不足道的,不值一提的,反义词: nonnegligible)

Thanks for your attention