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ABSTRACT: We disclose a catalytic method for the enantio- and diastereoselective union of alkyl ethers and heterodienes. We
demonstrate that a chiral Cu−BOX complex catalyzes the efficient oxidation of ethers into enol ethers in the presence of trityl
acetate. Then, the organocopper promotes stereoselective hetero Diels−Alder reaction between the in situ generated enol ethers and
β,γ-unsaturated ketoesters, allowing for rapid access to an array of dihydropyran derivatives possessing three vicinal stereogenic
centers.

Chiral ethers are essential building blocks of various
natural products, pharmaceuticals, and polymers.1−9

Such moieties can be accessed by stereoselective trans-
formations of alkyl enol ethers (e.g., BOX−Cu-catalyzed
hetero Diels−Alder reaction with 2,3-dihydrofuran; Figure
1A).10−29 However, only a limited number of enol ethers are
commercially available, and their synthesis and purification are
often cumbersome (e.g., partial hydrogenation of alkynyl
ethers, Wittig reaction).30−32 An enabling strategy to obviate
these key limitations would be to perform enantioselective
transformations of enol ethers that are generated in situ by
oxidation of significantly more accessible and otherwise stable
alkyl ethers (Figure 1B).33−40 Such an approach not only
would be operationally simple but would generate less waste
(vs the processes that demand preformation of enol
ethers).41−70

In contemplating ways to develop a protocol for the
enantioselective union of various alkyl ethers 1 and hetero-
dienes 2, we envisioned using a combination of a chiral Cu-
based complex and a trityl-containing compound (Ph3C−OR,
Figure 1B). It has been reported that [Ph3C]

+[BF4]
− serves as

a recipient of hydride from acetals and ethers.71−79 Inspired by
these studies, we imagined that Ph3C

+ (I), generated by the
reaction of organocopper and Ph3C−OR, receives a hydride
from an ether (1), leading to the formation of Ph3C−H and an
oxocarbenium ion (II). A Brønsted base would subsequently
deprotonate II to furnish enol ether III. An ensuing enantio-
and diastereoselective [4 + 2] cycloaddition between enol
ether III and a β,γ-unsaturated ketoester 2, activated by the
chiral organocopper catalyst, would deliver a dihydro-2H-pyran
derivative 3. A key advantage of this strategy is that it allows
the enantioselective union of otherwise-difficult-to-access enol
ethers (vs methods that are limited to relatively simple and
readily available dienophiles, e.g., Figure 1A).10−12,30−32,80

Thus, a considerable range of dihydro-2H-pyrans 3 comprised
of stereogenic centers at the C1, C2, and C3 positions may be
prepared. However, to achieve highly enantioselective syn-
thesis of 3, Ph3C

+ and the chiral Cu-based Lewis acid must be
able to perform their independent roles without overlapping
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Figure 1. Strategies for enantioselective synthesis of ethers.
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functions; otherwise, Ph3C
+ could promote racemic cyclo-

addition by activating 2, likely resulting in diminished
enantioselectivity.81 Herein, we report an organocopper-
based catalyst system that promotes in situ oxidation of acyclic
and cyclic ethers into enol ethers, and their enantioselective
cycloaddition with heterodienes.
We set out to identify a combination of a Cu-based complex

and a trityl-containing compound that could promote the
enantioselective union of (3-methoxypropyl)trimethylsilane 1a
and ethyl (E)-2-oxo-4-phenylbut-3-enoate 2a, generating 3a
(Table 1). We began by reacting 1a (0.20 mmol) and 2a (0.10
mmol) in the presence of 5.0 mol % [t-BuBOX(L1)−
Cu](SbF6)2 and 0.10 mmol [Ph3C]

+[BF4]
− (CH2Cl2, 40 °C,

16 h); this afforded rac-3a in 75% yield (endo:exo = 1.4:1;
entry 1). The formation of rac-3a indicates that Ph3C

+ not only
abstracts a hydride from 1a but also activates 2a and facilitates
its reaction with the 1a-derived dienophile (vs the desired
cycloaddition catalyzed by [L1−Cu](SbF6)2; IV → 3a, Figure
1B). Indeed, [Ph3C]

+[BF4]
− was found to mediate the

formation of rac-3a in the absence of [L1−Cu](SbF6)2 (39%
yield, endo:exo = 1.3:1; entry 2). These results suggest the need
for a catalyst system that is capable of generating a small
concentration of Ph3C

+ in situ which rapidly reacts with 1a to
afford Ph3C−H. This may allow the ensuing hetero Diels−
Alder reaction to be solely catalyzed by the chiral organo-
copper complex, thereby resulting in an enantioselective
process.
On the basis of these considerations, we evaluated Ph3C−

OH and its derivatives that might react with the Cu-based
Lewis acid to furnish Ph3C

+ in a catalytic quantity. As a result,
with Ph3C−OH, no product formation was observed when the
reaction mixture was allowed to stir at 40 °C (entry 3);
however, at 60 °C, endo-3a (90:10 er) and exo-3a (87:13 er)
were produced in 60% overall yield (endo:exo = 2.7:1; entry 4).
By use of the more Lewis acid-sensitive Ph3C−OAc, the
reaction occurred at 40 °C, giving endo-3a in 35% yield (96:4
er) and exo-3a in 20% yield (96:4 er; entry 5). To investigate
the effect of using different ligands, we tested various Cu-based
complexes (see the Supporting Information for details); using
[PhBOX(L2)−Cu](SbF6)2 or [t-BuPyBOX(L3)−Cu](SbF6)2,
3a was produced in ≤40% yield (50:50 to 76:24 er; entries 6
and 7). The catalysts possessing SbF6 counterions were
substantially more reactive than those complexes with OTf
or ClO4 anions (entries 5 vs 8 and 9). While the use of 0.30
mmol of 1a resulted in the formation of 3a in 87% yield (entry
10), with 0.40 mmol of 1a, 3a could be obtained in nearly
quantitative yield (entry 11). There was no formation of 3a in
the absence of [L1−Cu](SbF6)2 or Ph3C−OAc (entries 12
and 13).
An assortment of acyclic and cyclic ethers (1a−1s) could be

merged with different β,γ-unsaturated ketoesters (2a, 2b, 2t−
2w) to afford the corresponding hetero Diels−Alder products
with high enantio- and/or diastereoselectivity (3a−3j and 3l−
3w, Tables 2 and 3). The reaction between 1a and 2a gave
endo-3a as the major product (endo:exo = 1.8:1, 96% overall
yield). In contrast, with phthalimide-substituted β,γ-unsatu-
rated ketoester 2b, exo-3b (48% yield, 95:5 er) was formed
more predominantly than endo-3b (23% yield, 93:7 er). While
the O−CH2CH2Ph unit of 2-phenethoxyethyl acetate 1c was
efficiently merged with 2a to give 3c in 66% yield (endo:exo =
1:4.0, up to 95:5 er), the O−CH2CH2OAc group of 1c
remained intact. The union of (2-methoxyethyl)trimethylsilane
1d and 2a was found to proceed through the loss of the TMS

group to furnish 3d in 75% yield (endo:exo = 8.5:1, 95:5 er).
Dihydro-2H-pyran derivatives possessing benzoate (3e, 75%
yield, up to 96:4 er) or phthalimide (3f, 77% yield, up to 92:8
er) moieties were readily prepared. Next, we synthesized the
isotopologues of (2-methoxyethyl)benzene (1g and 1g-d3) and
independently reacted them with 2a, which resulted in the
formation of 3g (72% yield, endo:exo = 1:4.0, 95:5 er) and 3g-
d3 (68% yield, endo:exo = 1:4.0, 97:3 er), respectively. The 1H
NMR analysis of 3g-d3 revealed that only 4% of the OCD3
moiety underwent hydrogen isotope exchange. Furthermore,
only a trace amount of Ph3C−D was detected (see the

Table 1. Evaluation of Reaction Parametersa,b

aConditions: Reactions were performed under N2 atmosphere; (3-
methoxypropyl)trimethylsilane (1a, 0.20 mmol), ethyl (E)-2-oxo-4-
phenylbut-3-enoate (2a, 0.10 mmol), [L−Cu](X)2 (5.0 mol %),
Ph3C−Y (0.10 mmol), CH2Cl2 (0.6 mL), 40 °C, 16 h. bYield and the
ratio of endo and exo products were determined by 1H NMR analysis
of unpurified reaction mixtures with mesitylene as the internal
standard. ND stands for not determined. cThe reaction was
performed at 60 °C. d1a (0.30 mmol) and Ph3C−OAc (0.20
mmol) were used. e1a (0.40 mmol) and Ph3C−OAc (0.20 mmol)
were used. fThe solution was allowed to stir for 24 h.
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Supporting Information for details). These results indicate that
Ph3C

+-mediated hydride abstraction occurs selectively at the
more electronically accessible OCH2Bn group of 3g-d3 (as
compared to cleavage within less electron-rich OCD3 unit).
The unions of tetrahydrofuran 1h and its isotopologue (1h-

d8) with 2a were found to give 3h (88% yield, endo:exo = 12:1)
and 3h-d6 (80% yield, endo:exo = 11:1), respectively, with 95:5
er. To determine if the reaction of 1h and 2a proceeds more
efficiently than the process involving 1h-d8, a competition
kinetic isotope effect experiment was performed (Figure 2A).
The obtained kH/kD value of 2.8 is consistent with the
mechanistic scenario that the enol ether formation by
sequential hydride abstraction and deprotonation is more
facile with 1h. 1-Oxaspiro[4.4]nonane 1i was found to be a
viable substrate, giving endo-3i (72% yield, 98:2 er). The
reaction of tetrahydropyran 1j and 2a was less diastereose-
lective (3j, 88% yield, endo:exo = 2.8:1, up to 94:6 er)
compared to the processes involving five-membered cyclic
ethers (3h−3i). Oxidation of rac-2-phenyltetrahydrofuran
(rac-1k) was found to occur regioselectively to provide the
more substituted enol ether (Figure 2B); its cycloaddition with
2a gave rac-3k in 93% yield (endo:exo = 4.8:1).
We investigated the reversibility of the hetero Diels−Alder

reaction (Figure 2C,D). When a dihydro-2H-pyran derivative
3a was reacted with (S)-2-(chloromethyl)tetrahydrofuran 1l in
the presence of [L1−Cu](SbF6)2 and Ph3COAc, we observed
the formation of 3l in 20% yield (endo:exo ≥ 20:1). This result
implies that an enol ether generated in situ by oxidation of 1l
reacts with a transient unsaturated β,γ-unsaturated ketoester
resulting from a reversible reaction of 3a under the reaction
conditions (Figure 2C, see the Supporting Information for
details). Then, we reacted the 2.1:1 mixture of exo-3b and
endo-3b with 5.0 mol % [L1−Cu](SbF6)2 and allowed the
solution in CD2Cl2 to stir at 22 °C for 36 h (Figure 2D). This
resulted in the formation of exo-3b (93:7 er) as the major
product (endo:exo = 1:12), further supporting the notion that
the cycloaddition of 1a-derived enol ether and 2b is reversible.
On the basis of the stereochemistry of the products (3a−3g)
resulting from acyclic ethers (R1 group is cis to OR2), only Z-
configured enol ethers appear to participate in the hetero
Diels−Alder reactions. We performed a control experiment
using a preformed E-enol ether ((E)-4g, Figure 2E) and 2a to
find that 3g is formed in 90% yield (endo:exo = 1:4.7). In
addition, 1.0 mol % of [L1−Cu](SbF6)2 was found to catalyze
the isomerization of (E)-4g into (Z)-4g (in CD2Cl2 at 60 °C;
see the Supporting Information for details). These results
suggest that the acyclic ethers may be oxidized into a mixture
of E- and Z-configured enol ethers that can then equilibrate
under the reaction conditions.
The endo-selective Diels−Alder reactions between dien-

ophiles generated in situ by oxidation of enantiopure ethers
and a range of β,γ-unsaturated ketoesters were carried out in
the presence of [(S,S)-L1−Cu](SbF6)2 (Table 3). Dihydrofur-
ans possessing chloro (1l), bromo (1m), acetoxy (1n),

Table 2. Enantioselective Hetero Diels−Alder Reactionsa,b

aStructure of the major stereoisomer is depicted. Conditions: ether
(1, 0.40 mmol), β,γ-unsaturated ketoester (2, 0.10 mmol), [L1−
Cu](SbF6)2 (5.0 mol %), Ph3COAc (0.20 mmol), CH2Cl2 (0.6 mL),
40 °C, 24 h under N2 atmosphere. bYield of isolated and purified
product. The dr values were determined by the 1H NMR analysis of
the unpurified reaction mixture. See the Supporting Information for
the determination of the absolute and relative configurations. cThe
reaction mixtures were allowed to stir at different reaction
temperatures for the production of 3c and 3e−3g-d3 (60 °C), 3h

Table 2. continued

and 3h-d6 (22 °C), 3d (4 °C), and 3i (−20 °C). The syntheses of 3c
and 3e−3g-d3 used 10 mol % of [L1−Cu](SbF6)2. 3e was run in the
CHCl3 as the solvent, and for the production of 3f, 0.30 mmol of
Ph3COAc was used. Cyclic ethers (1h−1j) and Ph3COAc were added
in two batches (0.20 mmol 1h−1j/batch and 0.10 mmol Ph3COAc/
batch). See the Supporting Information for details.
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tosyloxy (1o), alkynyl (1p), and alkyl (1q) moieties could be
coupled with 2a to furnish 3l−3q in 55−90% yield (endo:exo ≥
20:1−11:1). For the production of 3l (90% yield, endo:exo =
11:1), the use of [(S,S)-L1−Cu](SbF6)2 was found to be

Table 3. Hetero Diels−Alder Reactions with Enantiopure
Ethersa,b

aStructure of the major stereoisomer is depicted. Conditions:
Reactions were performed under N2 atmosphere; ether (1, 0.20
mmol), β,γ-unsaturated ketoester (2, 0.10 mmol), [L1−Cu](SbF6)2
(5.0 mol %), Ph3C−OAc (0.15 mmol), CH2Cl2 (0.6 mL), 60 °C, 24
h. bYield of isolated and purified product. The dr values were
determined by the 1H NMR analysis of the unpurified reaction
mixtures. See the Supporting Information for determination of the

Table 3. continued

absolute and relative configurations. cThe solutions were allowed to
stir at 40 °C for the synthesis of 3p and at 22 °C for 3q. For
preparation of 3p, 10 mol % of [L1−Cu](SbF6)2 was used and 1p and
Ph3COAc were added in two batches (0.20 mmol 1o/batch and 0.10
mmol Ph3COAc/batch). To prepare 3r and 3s, 0.40 mmol of 1r or 1s
and 10 mol % of [(R,R)-L2−Cu](SbF6)2 were used; TrOAc was
added batchwise. See the Supporting Information for details.

Figure 2. Studies aimed at elucidating the reaction mechanism.
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crucial; [(R,R)-L1−Cu](SbF6)2 was found to be a mismatched
enantiomer of the catalyst as 3l was obtained as a complex
mixture of stereoisomers in 55% overall yield (see the
Supporting Information for details). The cycloadditions of
tetrahydropyran derivatives (1r, 1s) with 2a were found to
occur less efficiently; 3r (endo:exo = 1.7:1) and 3s (endo:exo =
1:2.3) were obtained in 86% and 53% yield, respectively.
However, a batchwise addition of Ph3COAc and a longer
reaction time were necessary (see the Supporting Information
for details). β,γ-Unsaturated ketoesters possessing an allyl
acetate moiety (2t), p-bromophenyl (2u), p-methoxyphenyl
(2v), or methyl (2w) substituents could be merged with 1l,
affording 3t−3w with endo to exo ratios of 20:1−7.3:1 (58−
89% yield).
In summary, we have developed an enantio- and

diastereoselective method for the transformations of vicinal
C−H bonds within various acyclic and cyclic ethers to generate
dihydro-2H-pyran derivatives. We found that by using a blend
of [t-BuBOX(L1)−Cu](SbF6)2 and Ph3COAc, it is possible to
convert ethers into enol ethers and then promote their
enantio- and diastereoselective reaction with β,γ-unsaturated
ketoesters. The catalyst system is tolerant of a variety of Lewis
acid-sensitive functional units and allows for rapid access to
valuable chiral ether products containing stereogenic centers at
the C1, C2, and C3 positions. The principles outlined above
demonstrate that the proper combination of a chiral Lewis acid
and an in situ generated hydride acceptor may be used for
chemo- and enantioselective functionalization of otherwise
stable ether-based molecules. This outcome provides a rational
basis for the future development of methods for the
stereoselective synthesis of biologically relevant ether-based
molecules, as well as their late-stage functionalization. Studies
aimed at further pursuing these objectives are currently
underway.
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