Literature Report V

Asymmetric Total Synthesis of Hetidine-Type C₂₀-Diterpenoid Alkaloids: (+)-Talassimidine and (+)-Talassamine

Reporter: Li-Xia Liu Checker: Wen-Jun Huang Date: 2021-10-25

Zhang, M. *et al. Angew. Chem. Int. Ed.* **2018**, *57*, 937 Zhang, M. *et al. J. Am. Chem. Soc.* **2021**, *143*, 7088

CV of Professor Min Zhang

Research:

- Total synthesis of complex natural products;
- The development of new organic reaction methodology.

Background:

- **1999-2003** B.S., West China School of Pharmacy Sichuan University;
- **2003-2009** Ph.D., West China School of Pharmacy Sichuan University;
- **2009-2013** Postdoc., University of Wisconsin, Madison;
- **2013-Now** Professor, School of Pharmaceutical Sciences, Chongqing University .

3 Total Synthesis of (+)-Talassimidine and (+)-Talassamine

Introduction

Representative members of hetisine-type and hetidine-type alkaloids

Total Synthesis of Spirasine IV and XI

Retrosynthetic Analysis

Synthesis of compound 7

Construction of A/F/C rings system

entry	[M]	amino ester source	yield (%) ^b	dr ^c		
1	CuBF ₄	Ph ₃ P=NCH ₂ CO ₂ Me	21	2.1:1		
2	CuPF ₆	Ph ₃ P=NCH ₂ CO ₂ Me	1e 20			
3	AgOTf	Ph ₃ P=NCH ₂ CO ₂ Me	59	5.3:1		
4	AgTFA	Ph ₃ P=NCH ₂ CO ₂ Me	56	5:1		
5	AgBF ₄	Ph ₃ P=NCH ₂ CO ₂ Me	60	3.5:1		
6	AgCIO ₄	Ph ₃ P=NCH ₂ CO ₂ Me	53	2.5:1		
7	Ag_3PO_4	Ph ₃ P=NCH ₂ CO ₂ Me	50	2.3:1		
8	AgOAc	Ph ₃ P=NCH ₂ CO ₂ Me	68	7:1		
9	AgOAc	NH ₂ CH ₂ CO ₂ Me	45	5:1		
10 ^{<i>d</i>}	AgOAc	Ph ₃ P=NCH ₂ CO ₂ Me	63	7:1		

^aConditions unless otherwise stated: **7** (0.12 mmol, 1 equiv), $N_3CH_2CO_2Me/PPh_3$ (1.1 equiv) or $NH_2CH_2CO_2Me$ (1.1 equiv), metal salt (0.1 equiv), DBU (2 equiv), toluene (2 mL), 0 °C, 1 h. ^bYield of the isolated major isomer **5**. ^cRatio of the yields of **5** and 14-*epi*-**5** (isolated products). ^dThe reaction was conducted on a 27 g scale.

Construction of the E ring

Construction of the B and D rings

Completion of the total synthesis

Total Synthesis of Talassimidine and Talassamine

Retrosynthetic Analysis

Construction of A/F/C rings system

Optimization of the Asymmetric Cycloaddition

	MeO TIPSC	(0) (0) (0) 8 am 16, >99% ee	ino ester Met	TIPSO 17	N N I	AgOAc base E = CO ₂ Me	
entry	[O] ^{a,b}	amino ester source ^{c,d}	base ^e	yield (%) ^f	dr ^g	ee (%) ^h	^a [DMP] oxidation: 16 (0.10 mmol), Dess-Martin periodinane (0.15
1	[DMP]	Ph ₃ P=NCH ₂ CO ₂ Me	DBU	54	7:1	45	mmol), CH ₂ Cl ₂ (3 mL), rt, 0.5 h, chromatography on silica gel. ^b [TEMPO] oxidation: 16 (0.10 mmol), TEMPO (0.01 mmol), KBr (0.20 mmol), NaClO (10% in H ₂ O, 0.20 mmol), NaHCO ₃ (saturated aqueous solution, 2 mL), CH ₂ Cl ₂ (3 mL), 0 °C to rt, 3 min, aqueous workup. ° 8 , N ₃ CH ₂ CO ₂ Me/PPh ₃ (0.11 mmol), CH ₂ Cl ₂ (2 mL), 0 °C 1 h. ° 8 , NH ₂ CH ₂ CO ₂ Me·HCl (0.20 mmol), Et ₃ N (0.22 mmol), MgSO ₂ (0.60 mmol), CH ₂ Cl ₂ (2 mL), 0 °C 1 h. °Crude 17 , AgOAc (0.01 mmol), base (0.11 mmol), toluene (2 mL), rt, 1 h. ^f Isolated yield of the major diastereoisomer from 16 . ^g Ratio of yields of the two isolated diastereoisomer; deter- mined by chiral HPLC analysis. ^f Crude 8 was used for the next step without chromatography purification.
2	[DMP]	Ph ₃ P=NCH ₂ CO ₂ Me	Et ₃ N	45	5:1	54	
3	[DMP]	NH ₂ CH ₂ CO ₂ Me	Et ₃ N	40	4:1	50	
4 ^{<i>i</i>}	[DMP]	NH ₂ CH ₂ CO ₂ Me	Et ₃ N	<5	-	-	
5 ^{<i>i</i>}	[TEMPO]	NH ₂ CH ₂ CO ₂ Me	Et ₃ N	51	4:1	>99	
6 ^{<i>i</i>}	[TEMPO]	NH ₂ CH ₂ CO ₂ Me	DIPEA	53	4:1	>99	
7 ⁱ	[TEMPO]	NH ₂ CH ₂ CO ₂ Me	TMG	56	4:1	>99	
8 ⁱ	[TEMPO]	NH ₂ CH ₂ CO ₂ Me	DBU	65	6:1	>99	
9 ⁱ	[TEMPO]	NH ₂ CH ₂ CO ₂ Me	Cs ₂ CO ₃	37	4:1	>99	
10 ^{<i>i</i>}	[TEMPO]	NH ₂ CH ₂ CO ₂ Me	K ₂ CO ₃	42	4:1	>99	
11 ^{<i>i</i>}	[TEMPO]	Ph ₃ P=NCH ₂ CO ₂ Me	DBU	45	5:1	36	

Construction of E ring

Construction of B ring

Completion of the total synthesis

Summary

- 22 Total steps for spirasine IV, 1.2% overall yield
- 23 Total steps for spirasine XI, 1.0% overall yield
- 1,3-Dipolar cycloaddition
- Sml₂-mediated free-radical addition

- 27 Total steps for (+)-talassimidine, 0.20% overall yield
- 26 Total steps for (+)-talassamine, 0.28% overall yield
- 1,3-Dipolar cycloaddition
- Dearomative cyclopropanation of the benzene ring
- S_N2-like ring opening of the cyclopropane

Zhang, M. et al. Angew. Chem. Int. Ed. 2018, 57, 937 Zhang, M. et al. J. Am. Chem. Soc. 2021, 143, 7088

Writing Strategy

The First Paragraph

The C₂₀-diterpenoid alkaloids constitute a large family of natural products, which are mainly isolated from the Aconitum, Consolidum, Delphinium, and Spiraea genera of plants that have a history of use in traditional medicine. Architecturally, the C_{20} -diterpenoid alkaloids can be classified into several subtypes (selected subtypes and representative hetidine-type members are shown in Scheme 1A). Of the biosynthetically related atisine-, hetidine-, and hetisine-type C_{20} -diterpenoid alkaloids, the hexacyclic hetidine core has a characteristic C14–C20 linkage; besides the C14-C20 linkage, the hetisine core has an additional C6-N linkage, forming a complex heptacyclic framework. The unique biological profiles and structural complexity of C_{20} -diterpenoid alkaloids render them highly sought-after synthetic targets.

The First Paragraph

Successful total syntheses of hetisine-type alkaloids have been reported by the groups of Muratake/Natsume, Gin, and Sarpong, as well as our group, reflecting considerable achievements toward total synthesis of various C₂₀diterpenoid alkaloids in recent years. However, there has been limited success in the synthesis of the seemingly less complex hetidine-type alkaloids, despite considerable efforts having been made toward this subtype. Guided by network analysis, Sarpong's group accomplished a unified total synthesis of C_{18} -, C_{19} -, and C_{20} -diterpenoid alkaloids and developed an elegant approach of Ga-catalyzed cycloisomerization to synthesize dihydronavirine, a structurally very similar analogue of navirine. Baran's group applied a two-phase synthetic strategy to synthesize the atisine alkaloids and construct the hetidine skeleton from a readily available ent-kaurane.

The First Paragraph

Qin and Liu developed an efficient biomimetic approach to access the denudatine- and atisine-type alkaloids and the hetidine skeleton from an atisine-type precursor. Ma, Liu, and colleagues used a hydrogen atom transfer-based radical cyclization as the key step to build the hetidine scaffold and accomplished an efficient synthesis of the proposed structure of navirine C. Recently, Li and co-workers reported an elegant synthesis of septedine and 7-deoxyseptedine, which represents the first and only route to hetidine-type C_{20} -diterpenoid alkaloids reported to date (Scheme 1B). Key steps of this synthesis included a Carreira polyene cyclization to construct the core framework and a Sanford Csp³–H functionalization to install the equatorial C7–OH.

Writing Strategy

We have accomplished the first asymmetric total synthesis of (+)-talassamine and (+)-talassimidine in 0.28 and 0.20% total yields from known compound **26** over 26 and 27 total steps, respectively. A regio- and diastereo-selective 1,3-dipolar cycloaddition of azomethine ylide generated the fundamental tetracyclic skeleton with five continuous stereogenic carbon centers in high enantiopurity (>99% ee). Besides the hetidine-type alkaloids, this chiral tetracyclic intermediate should also enable asymmetric access to the hetisine-type alkaloids.

An efficient sequence of dearomative cyclopropanation of the benzene ring and subsequent S_N^2 -like ring opening of the cyclopropane moiety with a water nucleophile was developed to stereospecifically install the challenging equatorial C7–OH group and to concurrently construct the B ring. This cyclopropanation strategy also allowed preparation of natural product analogues with unnatural functionalities at C7.

- Guided by network analysis, Sarpong's group accomplished a unified total synthesis of C₁₈-, C₁₉-, and C₂₀-diterpenoid alkaloids and developed an elegant approach of Ga-catalyzed cycloisomerization to synthesize dihydronavirine, a structurally very similar analogue of navirine. (由...来指导;完成;优雅的、优美的)
- To develop …, we embarked on … (为了…,我们着手于…)
- … be potentially prone to racemization (…可能容易发生消旋化)

Thanks for your attention !