Literature Report VIII

Enantioselective Total Synthesis of (-)-Himalensine A *via* a Palladium and 4-Hydroxyproline Co-catalyzed Desymmetrization of Vinyl-bromide-tethered Cyclohexanones

> Reporter: Li-Xia Liu Checker: Gao-Wei Wang Date: 2023-04-03

Hamlin, T. A.; Dixon, D. J. et al. J. Am. Chem. Soc. 2023, 145, 5422

CV of Professor Darren J. Dixon

Research:

- Catalytic stereoselective synthesis;
- New cooperative catalyst designs;
- New cascade reactions;
- Total synthesis of complex natural products.

Background:

- **1989-1993** MA Chemistry, St. Peter's College, University of Oxford;
- **D** 1993-1997 D. Phil, University of Oxford;
- **1997-2000** Postdoc., University of Cambridge;
- **2000-2008** Senior Assistant, Senior Lecturer, Reader, University of Cambridge;
- **2008-Now** Professor, University of Oxford.

2 Pd and 4-Hydroxyproline Co-catalyzed Desymmetrization

3 Total Synthesis of (–)-Himalensine A

Enamine Catalytic Enantioselective Desymmetrization

Thiourea Catalytic Enantioselective Desymmetrization

Dual Catalytic Enantioselective Desymmetrization

Dual Palladium/Chiral Amine Catalyst System

Optimization of the Reaction Conditions

	O → → → → → → → → → → → → →	O N Ts (ent)-5a		$ = H $ $ = OMe $ $ = CI $ $ = CF_3 $
entry	base	ligand	yield (%) ^b	ee (%) ^c
1	K ₂ CO ₃	13a	0	n/a
2	Cs_2CO_3	13a	16	29
3	NaOAc	13a	15	68
4	K ₃ PO ₄	13a	17	42
5	K ₂ HPO ₄	13a	27	82
6	KH ₂ PO ₄	13a	0	n/a
7 ^d	K ₂ HPO ₄	13a	40	86
8 ^d	K ₂ HPO ₄	13b	22	66
9 ^{<i>d</i>}	K ₂ HPO ₄	13c	68	94
10 ^d	K ₂ HPO ₄	13d	81	93

^aReaction Conditions: **11a** (0.10 mmol), **12a** (20 mol%), Pd(OAc)₂ (5 mol%), **13** (15 mol%), base (1.5 equiv), MeOH (0.10 M), 85 °C, 24 h. ^bDetermined by ¹H NMR analysis of crude reaction mixtures using mesitylene as an internal standard. ^cDetermined by chiral HPLC analysis. ^dConcentration of 0.05 M.

Optimization of the Reaction Conditions

entry	base	amine	ligand	yield (%) ^b	ee (%) ^c
11	K ₂ HPO ₄	12b	13c	16	n.d.
12	K ₂ HPO ₄	12c	13c	7	n.d.
13	K ₂ HPO ₄	12d	13c	0	n/a
14	K ₂ HPO ₄	12e	13c	95	92
15	K ₂ HPO ₄	12f	13c	95	91
16	K ₂ HPO ₄	12g	13c	66	96
17 ^d	K ₂ HPO ₄	12e	13d	95	94
18 ^d	K ₂ HPO ₄	(<i>ent</i>)- 12e	13d	95 (<i>ent</i>)	94 (<i>ent</i>)
19 ^{d,e}	K ₂ HPO ₄	(<i>ent</i>)- 12e	13d	0	n/a
20 ^{<i>d</i>}	-	(<i>ent</i>)- 12e	13d	0	n/a
21 ^{<i>d</i>}	K_2HPO_4	-	13d	0	n/a

^aReaction Conditions: **11a** (0.10 mmol), **12** (20 mol%), Pd(OAc)₂ (5 mol%), **13** (15 mol%), base (1.5 equiv), MeOH (0.10 M), 85 °C, 24 h. ^bDetermined by ¹H NMR analysis of crude reaction mixtures using mesitylene as an internal standard. ^cDetermined by chiral HPLC analysis. ^dConcentration of 0.05 M. ^eNo Pd(OAc)₂.

Substrate Scope

Retrosynthetic Analysis

Synthesis of Intermediate 17

Synthesis of Tricyclic Intermediate 3

Formal Synthesis of Daphniphyllum Alkaloids

Synthesis of Intermediate 2

Total Synthesis of Himalensine A

Summary

- J The 2-azabicyclo[3.3.1]nonane motif, known as the morphan core, is found in over 300 natural products across a variety of families, including the Strychnos, Morphine, Madangamine, and Daphniphyllum. Many of these compounds, such as strychnine and morphine, exhibit potent biological effects.
- In terms of enantioselective approaches, the desymmetrization of structurally simple molecules to rapidly access more architecturally complex and stereochemically defined products is widely considered as one of the most powerful and elegant synthetic strategies.
- Despite these advances, the application of enantioselective morphan core-generating desymmetrizing technology as a key complexity-building step in natural product synthesis is still in its infancy. To the best of our knowledge, ...

Writing Strategy

The Last Paragraph

In conclusion, we have developed a new enantioselective synthesis of himalensine A.

- Key to the rapid construction of this natural product was a highly convergent strategy based on an amide coupling/Michael addition/allylation/RCM sequence, which allowed for the introduction of three of the five rings in only five synthetic steps (three steps after telescoping)...
- J DFT computations revealed that the reaction proceeds via an intramolecular Heck reaction of an enamine intermediate formed *in situ* by condensation of the hydroxyproline catalyst with the cyclohexanone, where exquisite enantioselectivity arises from carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation step.

Representative Examples

- Despite these advances, the application of enantioselective morphan core-generating desymmetrizing technology as a key complexitybuilding step in natural product synthesis is still in its infancy. (在起步期)
- With the intention of broadening this concept to other complex natural product targets, we were drawn toward developing a desymmetrizing vinylation methodology for ... (为了...,我们被吸引到...)
- Pleasingly, upscaling of the key vinylation reaction from 40 mg to 4.0 g was straightforward, and the desired cyclized product 5a was obtained in 92% yield and 94% ee. (扩大规模)

Thanks for your attention !