Literature Report II

Convergent Total Synthesis of (−)-Cyclopamine

Reporter: Na Li

Checker: Jian Chen

Date: 2024-04-01

Sofiadis, M.; Xu, D.; Rodriguez, A. J.; Nissl, B.; Clementson, S.; Petersen, N. N.; Baran, P. S.* J. Am. Chem. Soc. 2023, 145, 21760

CV of Prof. Phil S. Baran

Background:

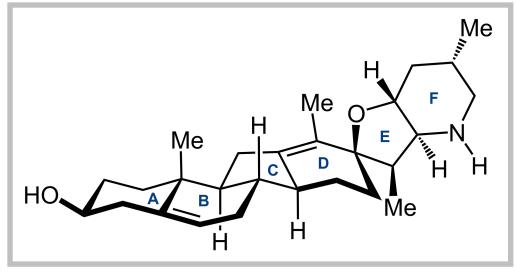
□ 1995-1997 B.S., New York University

□ 1997-2001 Ph.D., The Scripps Research Institute (K. C. Nicolaou)

□ 2001-2003 Postdoc., Harvard University (E. J. Corey)

□ 2003-2006 Assistant Professor, The Scripps Research Institute

□ 2006-now Professor, The Scripps Research Institute


Research:

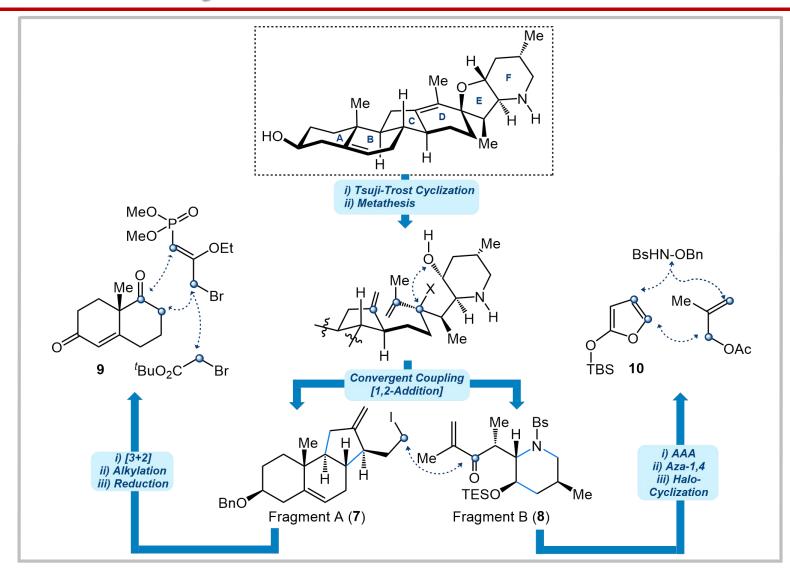
- > Total Synthesis of Natural Products
- > Efficient Methods for Constructing C-C and C-N Bonds

Contents

- 1 Introduction
- 2 Convergent Total Synthesis of (-)-Cyclopamine
- 3 Summary

Introduction

(-)-Cyclopamine

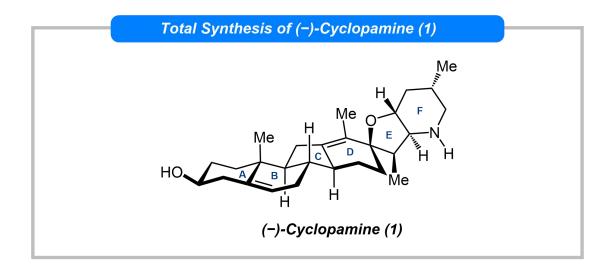


California corn lily

- Isolated from the Veratrum californicum (California corn lily) in 1968;
- Belongs to the Veratrum alkaloid family;
- Cyclopamine is a potent inhibitor of the highly conserved hedgehog signaling pathway;
- Cyclopamine has been recognized as a promising lead compound for anticancer agents.

Tremblay, M. R. et al. J. Med. Chem. 2009, 52, 4400

Retrosynthetic Analysis


Conditions	Results
[Cu(PPh₃)H] ₆ (1.0 eq.), MePh, 130 °C, 12 h	no reaction
Mn(dpm) ₃ (20 mol%), PhSiH ₃ (1.5 eq.), THF, 60 °C, 12 h	decompose
Sml ₂ (2.0 eq.), 'PrOH (10 eq.), THF, rt, 12 h	no reaction
Cu(OAc) ₂ •H ₂ O (0.2 eq.), dppbz (0.1 eq.), PMHS (4.0 eq.), ^t BuOH (4.0 eq.), MePh, 40 °C, 16 h	86% yield

Appel Reaction

The Reaction Mechanism of SI-4 to 7

Stage 3——Synthesis of (−)-Cyclopamine

Summary

» The First Enantioselective Total Synthesis of (¬)-Cyclopamine (1), 1.4% Overall Yield

» Synthesize ABC-Ring Through Annulation/CuH Reduction

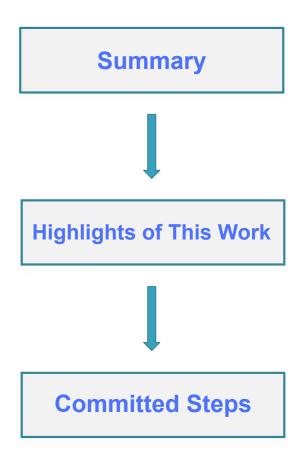
» Synthesize DEF-Ring System via AAA/Aza-Michael/Halocyclization/Tsuji-Trost/RCM

Writing Strategy

Introduction

Source and Physiological Activity

Structural Features



Examples of Synthesis

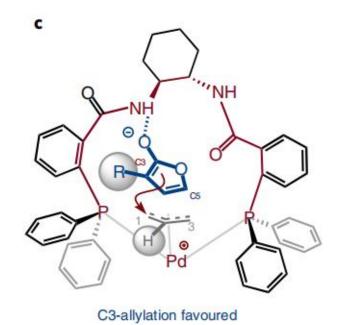
- Cyclopamine (1), first isolated from *Veratrum californicum*, is a notable member of the *Veratrum* alkaloid family. Studies from Beachy *et al.* revealed that cyclopamine is a potent inhibitor of the highly conserved hedgehog signaling pathway, which is critical for the correct differentiation and symmetry development of embryos.
- With respect to cyclopamine, the rare C-nor-D-homo steroid skeleton is further complicated by the fully substituted, spirocyclic THF motif, the unique *trans*-6,5-EF ring system, and the central tetrasubstituted olefin, all of which pose unique challenges to its synthesis.
- A pioneering synthesis of the closely related jervine (2) by the Masamune group involves an 18-step sequence starting from the advanced intermediate
 6, which in turn must be prepared in 25 steps from Hagemann's ester or obtained from degradation of hecogenin.

Writing Strategy

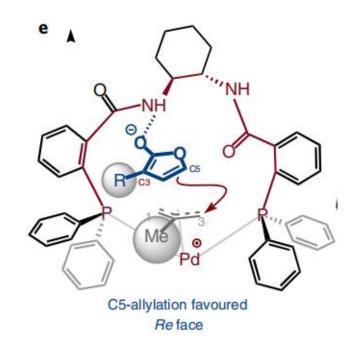
Last paragraph

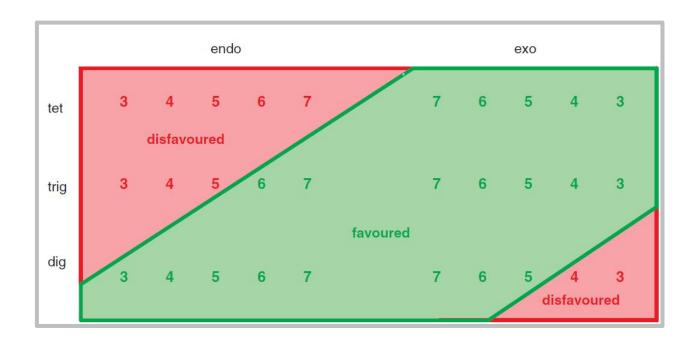
■ To conclude, a convergent total synthesis of (-)-cyclopamine (1) was achieved with a 16-step LLS (1.4% overall yield).

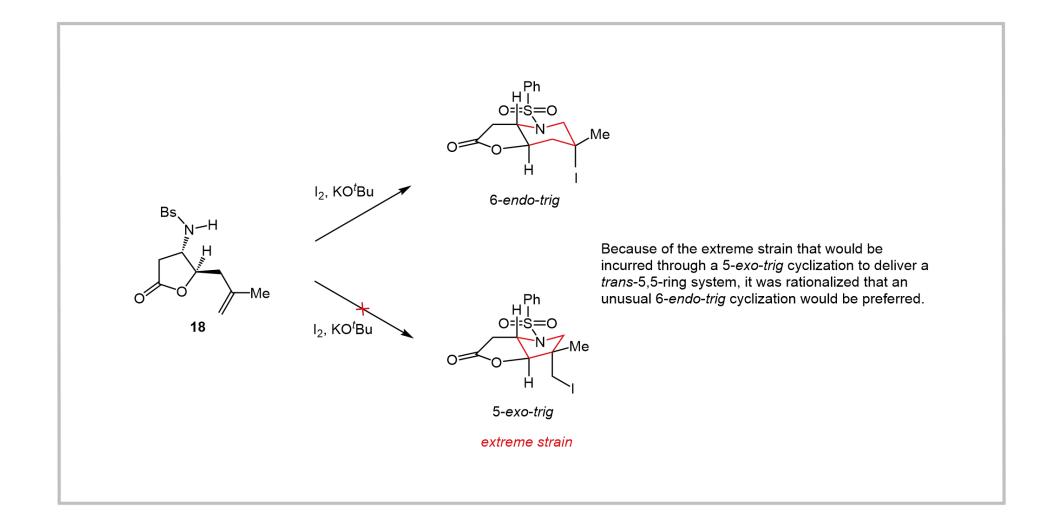
- Unlike the semisynthetic routes that predate this disclosure, the strategy outlined herein should be amenable to exploring deep-seated structural modifications for further SAR studies of this promising class of natural products.
- Key areas for improvement for which there are methodological gaps include a more direct conversion of 18 to 20 and a more concise fragment coupling that can minimize protecting group manipulations.


Representative Examples

- It is known *ex post facto* for inducing the cyclopia birth defect in sheep where the affected newborn lambs only had one eye and were reminiscent of the cyclops from Greek mythology. (让人想起)
- Conventional metathesis catalysts, such as Hoveyda-Grubbs second generation catalyst (Ru-1), gave low conversions even at elevated temperatures, and the less sterically encumbering o-tolyl variant Ru-2 only led to slightly improved results. (v. 阻碍)
- Attempts to suppress this process by running the reaction at ambient temperature instead of 100 °C surprisingly exacerbated the ring opening. (*n*. 环境温度)


Acknowledgement

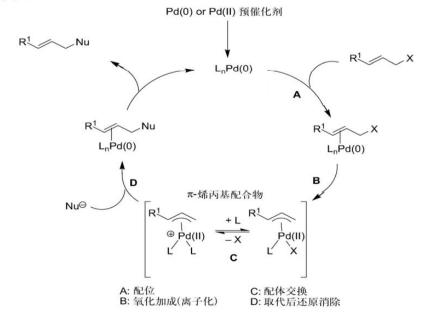

Thanks for your attention


TBSO TO
$$H_3$$
C H_3 C H_3 C H_3 C H_4 OAC H_3 C H_4 OAC H_4 C $H_$

Re face

表 3-2 常见基团的一取代环己烷直键取代与平键取代构象的势能差(25℃)

取代基	券能差(直键──平键) /(kJ・mol ⁻¹)	取代基	券能差(直键 ── 平键) /(kJ・mol ⁻¹)	取代基	势能差(直键──平键) /(kJ·mol ⁻¹)
−CH ₃	7.1	—C1	1. 7	-C ₆ H ₅	13.0
$-CH_2CH_3$	7.5	—Br	1.7	-CN	0.8
$-CH(CH_3)_2$	8.8	_I	1.7	-соон	5.0
$-C(CH_3)_3$	>18.4	-OH.	≈3.3	-NH2.	≈6.3
-F	0.8	-OCH ₃	2.9		


^{&#}x27;其值可受溶剂的影响,特别是氢键。

$$R_L$$
 C
 H
 N_U
 N_U

Tsuji-Trost 反应

Tsuji-Trost 反应是 Pd催化下碳亲核物种在烯丙基位上的取代反应。这些 反应经过 π-烯丙基钯中间体过程。

催化循环:

He, A. Y. Sutivisedsak, N. Spilling, C. D. Org. Lett. 2009, 11, 14

Ru-2: Ar = o-tolyl

KHMDS:双(三甲基硅基)氨基钾

$$Me_3Si \underbrace{N_-SiMe_3}_{K_+}$$

LHMDS: 双(三甲基硅基)氨基锂

$$Me_3Si \ N=$$
 $SiMe_3$ Li^+

dppbz: 1,2-双(二苯基膦基)苯

LiDBB: