Literature Report IX

Intermolecular Anti-Markovnikov Hydroamination of Alkenes with Sulfonamides, Sulfamides, and Sulfamates

Reporter: Qing-Xian Xie Checker: Gao-Wei Wang Date: 2025-1-20

Lin, A.; Karrasch, M. J.; Ganley, J. M.; Hejna, B. G.; Knowles, R. R. ACS Catal. 2024, 14, 13098-13104

CV of Prof. Robert R. Knowles

Background:

- **1999-2003** B. S., William & Mary
- **2003-2008** Ph. D., California Institute of Technology (Prof. David MacMillan)
- **2008-2011** Postdoc., Harvard University (Prof. Eric Jacobsen)
- **2011-2017** Associate Professor, Princeton University
- **2017-Now** Professor, Princeton University

Research:

- Proton-coupled electron transfer in organic synthesis
- □ Enantioselective catalysis with free radical intermediates
- **D** Catalytic olefin hydroamination

3 Intermolecular Hydroamination of Alkenes with Sulfonamides

Thermodynamically limited HAT reactions

Gentry, E. C.; Knowles, R. R.* Acc. Chem. Res. 2016, 49, 1546-1556

Multi-site proton-coupled electron transfer

Gentry, E. C.; Knowles, R. R.* Acc. Chem. Res. 2016, 49, 1546-1556

Introduction

Three pathways of PCET mechanism

Rhile, I. J.; Markle, T. F.; Nagao, H.; Rotter, K; Mayer, J. M.* J. Am. Chem. Soc. 2006, 128, 6075-6088

PCET promoted N-H bond-weakening

Choi, G. J.; Knowles, R. R.* J. Am. Chem. Soc. 2015, 137, 9226-9229

Choi, G. J.; Knowles, R. R.* J. Am. Chem. Soc. 2015, 137, 9226-9229

PCET promoted N-H bond-weakening

Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R.* *Nature* **2016**, *539*, 268-271

PCET promoted N-H bond-weakening

Zheng, S.; Gutierrez-Bonet, A.; Molander, G. A.* Chem 2019, 5, 339-352

PCET promoted O-H bond-weakening

Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R.* J. Am. Chem. Soc. 2019, 141, 1457-1462

Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R.* J. Am. Chem. Soc. 2019, 141, 1457-1462

PCET promoted reduction of C=C bond

Prasanna, R.; Guha, S.; Sekar, G.* Org. Lett. 2019, 21, 2650-2653

PCET promoted reduction of C=O bond

Tarantino, K. T.; Liu, P.; Knowles, R. R.* J. Am. Chem. Soc. 2013, 135, 10022-10025

Choi, G. J.; Knowles, R. R.* J. Am. Chem. Soc. 2015, 137, 9226-9229

Project Synopsis

Zhu, Q.; Graff, D. E.; Knowles, R. R.* J. Am. Chem. Soc. 2018, 140, 741-747

Optimization of Reaction Conditions

Optimization of Reaction Conditions

Entry	Base	Photocatalyst	Solvent	Yield (%)
1	NBu ₄ [(BuO) ₂ OPO]	[Ir-A]PF ₆	PhMe	2
2	NBu ₄ [(CF ₃) ₃ CO]	[Ir-A]PF ₆	PhMe	85
3	PBu ₄ [(CF ₃) ₃ CO]	[Ir-A]PF ₆	PhMe	97
4	PBu ₄ [BzO]	[Ir-A]PF ₆	PhMe	41
5	PBu ₄ [BuO]	[Ir-A]PF ₆	PhMe	6
6	2,6-lutidine	[Ir-A]PF ₆	PhMe	0
7	PBu ₄ [(CF ₃) ₃ CO]	[Ir-B]PF ₆	PhMe	92
8	PBu ₄ [(CF ₃) ₃ CO]	[Ir-C]PF ₆	PhMe	51
9	PBu ₄ [(CF ₃) ₃ CO]	[Ir-D]PF ₆	PhMe	2
10	PBu ₄ [(CF ₃) ₃ CO]	[Ir-A]PF ₆	PhCF ₃	74
11	PBu ₄ [(CF ₃) ₃ CO]	[Ir-A]PF ₆	DCM	19
12	PBu ₄ [(CF ₃) ₃ CO]	[Ir-A]PF ₆	MeCN	10
13	PBu ₄ [(CF ₃) ₃ CO]	[Ir-A]PF ₆	THF	4

Substrate Scope

Substrate Scope

Substrate Scope

Proposed Mechanism

Summary

首段写作思路

末段写作思路

- We previously leveraged this strategy to generate sulfonamidyl radicals under the joint action of [Ir(dF(CF₃)ppy)2(5,5'-d(CF₃)bpy)]PF₆ ([Ir-A]PF₆) photocatalyst and tetrabutylammonium dibutyl phosphate base cocatalyst for the....(联合作用)
- □ While notable, all three protocols are restricted in scope with respect to either the alkene or sulfonamide component. (受限制的)
- Additional mechanistic work aimed at elucidating the precise nature of the electron and proton transfer steps involved in N-radical formation will require further investigation. (精确的机制)

Thanks for your attention !