Literature Report VI

Dinuclear Gold-Catalyzed *para*-Selective C-H Arylation of Undirected Arenes by Noncovalent Interactions

Reporter: Shan-Shan Xun

Checker: Han Wang

Date: 2023-11-20

CV of Prof. Xie Jin (谢劲)

Research Interest:

- □ Organic Synthetic Methodology
- Mechanistic Studies

Background:

□ 2004-2008 B.S., Northeast Forestry University

□ 2008-2013 Ph.D., Nanjing University

□ 2013-2014 Research Associate, Nanjing University

□ 2014-2017 Postdoc., Heidelberg University

□ 2017-2019 Associate Professor, Nanjing University

□ 2019-now Professor, Nanjing University

Contents

1 Introduction

Dinuclear Gold-Catalyzed para-C-H Arylation of Fluoroarenes

3 Summary

Strategies for Selective Aromatic C-H Bond Activation

directing group

steric hindrance

Require additional steps to install directing groups or sterically bulky groups

Compromising the reaction economy

electronic effect

EWG / EDG substituent in most cases gives rise to poor *ortho*-, *meta*- and *para*-regioselectivity

Goswami, N.; Maiti, D. Chem 2023, 9, 989

Font, M.; Larrosa, I. Chem. Sci. 2018, 9, 7133

Saito, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 5193

Xu, B.; Zhou, Q.-L. J. Am. Chem. Soc. 2015, 137, 8700

Ni, C.; Hu, J. Chem. Soc. Rev. 2016, 45, 5441

Lee, S. Y.; Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 15278

Xiong, N.; Zeng, R. Chin. J. Chem. 2020, 38, 185

Optimization of Arylation Reaction

Optimization of Arylation Reaction

Entry ^a	Variatuon (s)	Yield ^b	r.r.¢
1	None	83%	93 : 7
2	DCE instead of C ₆ F ₆	88%	80 : 20
3	3b instead of 3a	76%	87 : 13
4	3c instead of 3a	68%	86 : 14
5	3d instead of 3a	67%	87 : 13
6	Without 3a	NR	ND
7	Without PhI(OAc) ₂	NR	ND
8	Without CSA	NR	ND
9	Without HFIP	NR	ND

^aReaction conditions: **3a** (5 mol%), **1a** (2 equiv.), **2a** (0.2 mmol, 1.0 equiv.), PhI(OAc)₂ (1.3 equiv.), CSA (1.5 equiv.), HFIP (2 equiv.), C_6F_6 (0.3 mL), rt, 12h. ^bisolated yield. ^cThe regioisomeric ratio (*para vs. ortho*) was determined by GC-MS prior to purification.

Fluoroaromatics Scope

Isolated yields are given and the regioisomeric ratio (r.r.) of *para*-site of fluorine atoms versus other sites (e.g., *ortho*-site of fluorine atoms and *ortho*, *para*-site of other substituent) is given in parentheses. The regioisomeric ratio between two arenes is given as R_A:R_B.

Scale-up Reactions and Synthetic Application

Experimental Mechanistic Studies

Experimental Mechanistic Studies

Proposed Mechanism

Summary

Writing Strategy

☐ The First Paragraph

Importance of direct activation of C-H bonds

Limitations of current strategies

Challenge

- Direct activation of C-H bonds in aromatic hydrocarbons can result in a powerful C-C bond formation strategy, thus endowing arenes with diversification possibilities for new functions.
- ✓ Although strategies based on directing groups and steric hindrance have been successful, they require additional steps to install directing groups or sterically bulky groups into arene skeletons before C-H activation, thus compromising the reaction economy.
- ✓ However, achieving para-C-H selective arylation of monofluoroarenes remains highly challenging because fluorine atom has a small van der Waals radius (1.47 Å) and high electronegativity (~3.98).

Writing Strategy

☐ The Last Paragraph

Summary of this work

Advantages of the current method

Outlook of this work

- ✓ In summary, we have developed a robust goldcatalyzed para-C-H selective arylation strategy of undirected monofluoroarenes with benchstable aryl silanes and germanes.
- ✓ Features of this protocol include broad substrate scope, excellent functional group compatibility, and simple operation under room temperature ... also competent coupling partners for gold-catalyzed selective arylation.
- ✓ Its success would stimulate more attention to develop di- and poly-nuclear transition metal catalysis to address the challenging selectivity issues in organic chemistry.

Representative Examples

In general, the introduction of deactivating groups and weakly activating groups on the aryl rings hardly influence the regioselectivity, and the *para*-C-H site on monofluoroaryl moiety is still the predominant reaction site. (主要的)

To our delight, when methanol was used to replace HFIP, this side reaction can be suppressed and the desired *para*-arylation products were successfully obtained with high selectivity. (抑制)

This implies a possible noncovalent interaction between 1-fluoronaphthalene and C_6F_6 , which substantially raises the melting point to 49.1-50.5 °C. (相当多地)

Thanks for your attention