Literature Report VI

Nickel-Catalyzed C–I-Selective C(sp²)–C(sp³) Cross-Electrophile Coupling of Bromo(iodo)arenes with Alkyl Bromides

Reporter : Hao Tang Checker : Yu-Qing Bai Date : 2023-05-29

Ying, X.; Li, Y.; Li, L.; Li, C. *Angew. Chem. Int. Ed.* **2023**, e202304177

Education and Employment:

B.S., Qingdao University of Science and Technology **2004–2008**

 \Box **2008-2013** Ph.D., NIBS (Prof. Xiaoguang Lei)

 \Box **2013–2014** Postdoc., NIBS (Prof. Xiaoguang Lei)

 \Box **2014–2017** Postdoc., The Scripps Research Institute (Prof. Phil S. Baran)

□ 2017-Now Assistant Investigator, NIBS

Dr. Chao Li

Research Interest:

➢ Discovery of novel chemical reactions and their applications in the syntheses of natural products and bioactive molecules.

2 Nickel-Catalyzed Cross-Electrophile Coupling

.

Xue, W.; Jia, X.; Gong, H. *et al*. *Chem. Soc. Rev.* **2021***, 50,* 4162

Conventional Cross-Electrophile Coupling

Xue, W.; Jia, X.; Gong, H. *et al*. *Chem. Soc. Rev.* **2021***, 50,* 4162

Nickel-Catalyzed Cross-Electrophile Coupling

Anka-Lufford, L. L.; Prinsell, M. R.; Weix, D. J. *J. Org. Chem.* **2012**, *77*, 9989

Li, X.; Feng, Z.; Zhang, X. *et al*. *Org. Lett.* **2015**, *17*, 5570

Nickel-Catalyzed Cross-Electrophile Coupling

Anka-Lufford, L. L.; Prinsell, M. R.; Weix, D. J. *J. Org. Chem.* **2012**, *77*, 9989

Nickel-Catalyzed Asymmetric Reductive Cross-Coupling

Kadunce, N. T.; Reisman, S. E. *J. Am. Chem. Soc.* **2015**, *137*,10480

Poremba, K. E.; Kadunce, N. T. Reisman, S. E. *et al*. *J. Am. Chem. Soc.* **2017**, *139*, 5684

Dual-Catalyzed Cross-Electrophile Coupling

Charboneau, D. J.; Barth, E. L. Zultanski, S. L. *et al*. *ACS Catal.* **2020***, 10,* 12642

Metallaphotoredox-Catalyzed Cross-Electrophile Coupling

Zhang, P.; Le, C. C.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2016***, 138,* 8084

Metallaphotoredox-Catalyzed Cross-Electrophile Coupling

Lin, K.; Wiles, R. J.; Molander, G. A. *et al*. *ACS Catal.* **2017***, 7,* 5129

Electrochemical Nickel-Catalyzed Cross-Electrophile Coupling

Nickel-Catalyzed Cross-Electrophile Coupling

Optimization of the Reaction Conditions

Optimization of the Reaction Conditions

*^a*The reactions were conducted at a 0.15 mmol scale of **2** at a 0.06 M concentration for 12 h. *^b* Yields and the ratio of **3**, **3-***iso*, and **4** were determined by LC/MS with external calibration.

Optimization of the Reaction Conditions

Yields and the ratio of **3**, **3-***iso*, and **4** were determined by LC/MS with external calibration. *^c***L7** was used as the ligand.

Substrate Scope

Substrate Scope

Substrate Scope

Synthetic Utility

Synthetic Utility

Control Experiments

Proposed Mechanism

Calculated Energy Changes

Summary

Nickel-Catalyzed Cross-Electrophile Coupling

- 3°, 2°, and 1° alkyl bromides;
- High C(sp²)-I Selectivity;
- ⚫ Broad substrate scope;
- ⚫ Excellent functional group tolerance.

Writing Strategy

- Lead compounds with greater molecular complexity and 3dimensionality—which can be assessed based on the relative abundance of $C(sp^3)$ groups—tend to have higher clinical success rates, owing to their increased binding specificity with target proteins. Accordingly, developing general and practical methods that can unbiasedly introduce various sp³-hybridized carbons to flat aromatic rings can enrich modern drug discovery programs.
- Transition-metal catalyzed cross-couplings are among the most powerful strategies in forging C(sp²)-C(sp³) bonds, and broadly available aryl bromides and iodides are two of the most reactive and useful aryl sources in these cross-coupling reactions.
- However, the presence of bromo and iodo substitutions on the same arene raises the challenge of haloselectivity (differentiating C−I from C−Br bonds). If the reactivities of iodo and bromo groups on the same aromatic ring can be readily distinguished, then these two reactive halides can be used in an iterative and programable manner to increase the molecular complexity and expand the 3-dimensionality of flat aromatic rings.

Writing Strategy

◆ In summary, we have developed a highly practical C(sp²)-I selective XEC of bromo(iodo)arenes with diverse 1° , 2° , and 3° alkyl bromides under mild conditions.

- Beyond the exceptional substrate generality, the wide functional group compatibility, and the excellent $C(sp^2)$ -I selectivity, this XEC is attractive in that it provide an efficient method to construct aryl bromide-flanked quaternary carbons. When viewed alongside the diverse crosscoupling reactions available with aryl bromides, this C(sp²)−I selective XEC opens access to a broad array of alkylsubstituted arenes covering a large chemical space.
- ◆ We anticipate that this C(sp²)-I selective XEC is likely to find wide applications, including beyond medicinal chemistry, on account of its ease-of-use and the ready availability of its essential building blocks: bromo(iodo)arenes and alkyl bromides. Further development and practical application of this reaction, as well as detailed mechanistic studies, are currently underway in our laboratory

➢ Additionally, we **showcase the practical utility of** this C(sp²)−I selective XEC **in**··· (展现··· 的实用性)

➢ **Mechanistically**, we found that ··· (从机理的角度)

➢ **When viewed alongside** the diverse crosscoupling reactions available with aryl bromides, ··· (从客观角度观察)

Thanks for your attention !