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Introduction

Isolation of their first congener—1976

metabolized

( terpenoids)

derived from DMOA

S ( meroterpenoids) : [ fungal meroterpenoidsJ
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orsellinic acid (DMOA) (=)-berkeleyone A (1)

& Dense (fg=2RY) tetracyclic framework
€ Bicyclo[3.3.1]nonane core
€ Three quaternary carbon within C-ring

€ Highly oxidized D-ring without any hydrogen-atom substituents




Introduction

O Representative Structures
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Synthesis of (*+)-Berkeleyone A
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Ti(lll)-Mediated Radical Cyclization
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Synthesis of (+)-Berkeleyone A
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Enantioselective Synthesis of Berkeleyone A and Preaustinoids
|
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Retrosynthetic Analysis

s Hidden symmetry recognition within the D-ring
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Diastereoselective

Carbonyl a-tert-alkylation (C11-C12) dearomative alkylation
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Stage 1—Preparation of two Fragments
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Stage 1—Preparation of two Fragments

O Synthesis of 10
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Ti(lll)-Mediated Radical Cyclization
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Stage 1—Preparation of two Fragments

O Synthesis of 7
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Stage 2—Construction of C-ring
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Stage 2—Construction of C-ring

OMe Dearomative alkylation
Me Me 6 |iHMDS, THF/Toluene
HO OH H
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Stage 2—Construction of C-ring

O Carbonyl a-tert-Alkylation

OMe

Entry Tactics Conditions results
1 Bronsted acid-mediated formic acid, TFA, TsOH, etc.
cationic cyclization
2 Lewis acid-mediated SnCl,, Et,AICI, BF*Et,0, etc. 100% cons.
cationic cyclization unidentified
Photocatalyzed decomposed
3 radical cylization LED 390 nm, MeCN side products
4 Mn(OAc),;-mediated Mn(OAC),, Cu(OAc),, AcOH

oxidative cyclization
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Stage 2—Construction of C-ring

OMe OMe

Sc(OTf);  TBSO

DMSO, 100 °C Me
74%, > 20:1 d.r.

9a 9b 17

Carbonyl

Prins cyclization O-tert-alkylation a-tert-alkylation

--------------------------------------------------------

-
--------------------------------------------------------

Entry Conditions? 18° (desired product)  19°  20°
1 17, Sc(OTf);, DCM, 23 °C 50 13 23
2 9a/9b, Sc(OTf);, DMSO, 100 °C, then DCM, 23 °C 41 6 9

2 All reactions were performed on a 0.01 mmol scale in 1.0 mL solvent. ? Isolated yield.
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Stage 3—Elaboration of Highly Oxidized D-ring
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Stage 3—Elaboration of Highly Oxidized D-ring
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Stage 4—Biomimetic Diversification of 1
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Stage 4—Biomimetic Diversification of 1
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MeO MeO MeO

(-)-berkeleyone A (1) (=)-preaustinoid A (2) (=)-preaustinoid A1 (3)
anti-inflammatory caspase-1 inhibitor caspase-1 inhibitor

MeO MeO MeO
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QRecognition of a hidden symmetry QTotaI synthesis of 1-6 in 12-15 steps
Q Diastereoselective dearomative alkylation

Q Sc(OTf);-mediated sequential Krapcho dealkoxycarbonylation/carbonyl a-tert-alkylation
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Writing Strategies

O The First Paragraph
The importance of fungal meroterpenoids
(especially for berkeleyone A)
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The First Paragraph

Fungal meroterpenoids derived from a simple aromatic polyketide 3,5-
dimethylorsellinic acid (DMOA) are a large series of hybrid natural products
with huge structural diversity and impressive bioactivities. Since the
Isolation of their first congener in 1976, over 100 compounds have been
described. From a biosynthetic point of view, (-)-berkeleyone A (1) stands
as a potential gateway compound through the union of a polyketide
fragment DMOA with farnesyl pyrophosphate. Thereon, diversification at A-
rng generates (—)-preaustinoid A (2) and (-)-preaustinoid Al (3), where
contraction of D-ring produces (-)-preaustinoid B (4), (-)-preaustinoid B1
(5), and (+)-preaustinoid B2 (6). Interestingly, 1-3 also possess anti-
iInflammatory properties by inhibiting the signaling enzyme caspase-1. To
further unveil the biological function and therapeutic potential of DOMA-
derived meroterpenoids, both biological and chemical synthetic studies
have been done extensively in the past decade.

25



The First Paragraph

T
From a chemical synthesis perspective, DMOA-derived meroterpenoids
present an exceedingly challenge, as exemplified by (—)-berkeleyone A (1),
which possesses a dense tetracyclic framework with a hallmark bicyclo-
[3.3.1]nonane core, three quaternary carbon centers within C-ring, and a
highly oxidized D-ring without any hydrogen atom substituents. Hitherto two
elegant racemic total synthesis of 1 have been reported by Maimone and
Newhouse groups, where oxidative ring expansion and an isomerization-
cyclization cascade have been independently applied for the installation of
bicyclo[3.3.1]nonane core. En route to polycyclic terpenoids and terpenoid
hybrids, we also initiated our investigations into DMOA-derived
meroterpenoids. Herein we report our synthetic endeavors, which ultimately
accumulate into the first enantioselective total synthesis of 1-6 in 12-15

steps, respectively.
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Writing Strategies

O The Last Paragraph
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The Last Paragraph

To conclude, benefited from the recognition of a hidden symmetry within
the D-ring, we have accomplished the first enantioselective total synthesis
of 1-6 in 12-15 steps, respectively, starting from commercially available
2,4,6-trinydroxybenzoic acid hydrate. In the course of our synthetic studies,
we devised a highly convergent route relied upon a diastereoselective
dearomative alkylation. Meanwhile, a Sc(OTf);-mediated sequential
Krapcho dealkoxycarbonylation/carbonyl a-tert-alkylation have been
developed to forge bicyclo[3.3.1]Jnonane core. At last, we also disclosed our
preliminary biomimetic investigations, which generated five additional
preaustinoid congeners through a series of rearrangements (a-ketol

rearrangement, a-hydroxyl-B-diketone rearrangement, etc).
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The Last Paragraph

Overall, our convergent route is highly modular, thereby should be
amenable to access structurally diverse DMOA-derived meroterpenoids, as
well as other bicyclo[3.3.1]nonane-containing meroterpenoids, which are

currently underway and will be reported in due course.
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Representative Examples

€ With five-step access to tetracycle 16, we proceeded to evaluate the
second pivotal (X AY) transformation in the synthetic pathway:
conversion of the 5,6-fused ring system into the hallmark (fR=5H9)

bicyclo[3.3.1]nonane skeleton.

€ En route (1A, MELFLE) to polycyclic terpenoids and terpenoid
hybrids, we also initiated our investigations into DMOA-derived

meroterpenoids.

€ As has already been constantly recognized in many landmark total
syntheses, the recognition of latent (EF{E£HAY) symmetry in a target
molecule would drastically simplify the task at hand. (RINEFERE. 5
ERYOGELE)
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