Literature Report 3

Enantioselective Total Synthesis of Berkeleyone A and Preaustinoids

Reporter: Tong Niu Checker: Shanshan Xun

Ting, C. P.; Xu, G.; Maimone, T. J. *J. Am. Chem. Soc.* **2016**, *138*, 14868 Zhang, Y.; Ji, Y.; Li, H. *Angew. Chem. Int. Ed.* **2021**, *60*, 14869

CV of Prof. Houhua Li (黎后华)

Research:

- Total Synthesis of Bioactive Natural Products
- Cellular Targets Identification and Elucidation of the Mechanism of Action of Natural Products
- Natural Product Research for Translational Medicine and Therapeutics

Education & Professional Experience:

- □ 2002-2006 B.S. in Pharmaceutical Sciences, Peking University
- D 2006-2009 M.S. in Chemical Biology, Peking University
- **2009-2011** Research Assistant, National Institute of Biological Sciences
- **2011-2016** Ph.D. in Organic Chemistry, University of Geneva
- **2016-2019** Postdoc, Max Planck Institute of Molecular Physiology
- **2019-Present** Tenure-Track Assistant Professor, Peking University

Contents

Introduction

3 Enantioselective Synthesis of Berkeleyone A and Preaustinoids

Isolation of their first congener—1976

◆ Dense (稠密的) tetracyclic framework

- ♦ Bicyclo[3.3.1]nonane core
- Three quaternary carbon within C-ring

Highly oxidized D-ring without any hydrogen-atom substituents

Introduction

Representative Structures

Synthesis of (\pm)-Berkeleyone A

Ti(III)-Mediated Radical Cyclization

Justicia, J.; Rosales, A.; Cuerva, J. M. Chem. Eur. J. 2004, 10, 1778

Synthesis of (\pm)-Berkeleyone A

Enantioselective Synthesis of Berkeleyone A and Preaustinoids

Retrosynthetic Analysis

Stage 1—Preparation of two Fragments

Stage 1—Preparation of two Fragments

□ Synthesis of 10

Barrero, A. F.; Herrador, M. M.; Sánchez, E. M. Org. Lett. 2005, 7, 2301 Domingo, V.; Silva, L.; Barrero, A. F. J. Org. Chem. 2009, 74, 6151

Ti(III)-Mediated Radical Cyclization

Justicia, J.; Rosales, A.; Cuerva, J. M. Chem. Eur. J. 2004, 10, 1778

Stage 1—Preparation of two Fragments

□ Synthesis of 7

Schmid, M.; Trauner, D. Angew. Chem. Int. Ed. 2017, 56, 12332

□ Carbonyl *α*-*tert*-Alkylation

Entry	Tactics	Conditions	results
1	Brønsted acid-mediated cationic cyclization	formic acid, TFA, TsOH, etc.	
2	Lewis acid-mediated cationic cyclization	SnCl ₄ , Et ₂ AICI, BF ₃ •Et ₂ O, etc.	100% cons. unidentified
3	Photocatalyzed radical cylization	LED 390 nm, MeCN	decomposed side products
4	Mn(OAc) ₃ -mediated oxidative cyclization	Mn(OAc) ₃ , Cu(OAc) ₂ , AcOH	

Entry	Conditions ^a	18 ^b (desired product)	19 ^b	20 ^b	
1	17 , Sc(OTf) ₃ , DCM, 23 °C	50	13	23	
2	9a/9b , Sc(OTf) ₃ , DMSO, 100 °C, then DCM, 23 °C	41	6	9	
^a All reactions were performed on a 0.01 mmol scale in 1.0 mL solvent ^b Isolated vield					

Stage 3—Elaboration of Highly Oxidized D-ring

Stage 3—Elaboration of Highly Oxidized D-ring

Stage 4—Biomimetic Diversification of 1

Stage 4—Biomimetic Diversification of 1

 $[\alpha]_D^{25} = +90.0 (c \ 1.0, \text{CHCl}_3, \text{Ref.})$ $[\alpha]_D^{25} = -54.0 (c \ 0.1, \text{CHCl}_3, \text{revised})$

Summary

♀ Recognition of a hidden symmetry ♀ Total synthesis of **1-6** in 12-15 steps

♀ Diastereoselective dearomative alkylation

 \mathbb{Q} Sc(OTf)₃-mediated sequential Krapcho dealkoxycarbonylation/carbonyl α -tert-alkylation

Writing Strategies

□ The First Paragraph

The First Paragraph

Fungal meroterpenoids derived from a simple aromatic polyketide 3,5dimethylorsellinic acid (DMOA) are a large series of hybrid natural products with huge structural diversity and impressive bioactivities. Since the isolation of their first congener in 1976, over 100 compounds have been described. From a biosynthetic point of view, (–)-berkeleyone A (1) stands as a potential gateway compound through the union of a polyketide fragment DMOA with farnesyl pyrophosphate. Thereon, diversification at Aring generates (–)-preaustinoid A (2) and (–)-preaustinoid A1 (3), where contraction of D-ring produces (–)-preaustinoid B (4), (–)-preaustinoid B1 (5), and (+)-preaustinoid B2 (6). Interestingly, 1-3 also possess antiinflammatory properties by inhibiting the signaling enzyme caspase-1. To further unveil the biological function and therapeutic potential of DOMAderived meroterpenoids, both biological and chemical synthetic studies have been done extensively in the past decade.

The First Paragraph

From a chemical synthesis perspective, DMOA-derived meroterpenoids present an exceedingly challenge, as exemplified by (-)-berkeleyone A (1), which possesses a dense tetracyclic framework with a hallmark bicyclo-[3.3.1] nonane core, three quaternary carbon centers within C-ring, and a highly oxidized D-ring without any hydrogen atom substituents. Hitherto two elegant racemic total synthesis of **1** have been reported by Maimone and Newhouse groups, where oxidative ring expansion and an isomerizationcyclization cascade have been independently applied for the installation of bicyclo[3.3.1]nonane core. En route to polycyclic terpenoids and terpenoid investigations into DMOA-derived also initiated our hybrids, we meroterpenoids. Herein we report our synthetic endeavors, which ultimately accumulate into the first enantioselective total synthesis of **1–6** in 12–15 steps, respectively.

Writing Strategies

□ The Last Paragraph

To conclude, benefited from the recognition of a hidden symmetry within the D-ring, we have accomplished the first enantioselective total synthesis of **1–6** in 12–15 steps, respectively, starting from commercially available 2,4,6-trihydroxybenzoic acid hydrate. In the course of our synthetic studies, we devised a highly convergent route relied upon a diastereoselective dearomative alkylation. Meanwhile, a Sc(OTf)₃-mediated sequential Krapcho dealkoxycarbonylation/carbonyl α -tert-alkylation have been developed to forge bicyclo[3.3.1]nonane core. At last, we also disclosed our preliminary biomimetic investigations, which generated five additional preaustinoid congeners through a series of rearrangements (α -ketol rearrangement, α -hydroxyl- β -diketone rearrangement, etc).

Overall, our convergent route is highly modular, thereby should be amenable to access structurally diverse DMOA-derived meroterpenoids, as well as other bicyclo[3.3.1]nonane-containing meroterpenoids, which are currently underway and will be reported in due course.

- With five-step access to tetracycle 16, we proceeded to evaluate the second pivotal (关键的) transformation in the synthetic pathway: conversion of the 5,6-fused ring system into the hallmark (标志的) bicyclo[3.3.1]nonane skeleton.
- En route (在途中、从头开始) to polycyclic terpenoids and terpenoid hybrids, we also initiated our investigations into DMOA-derived meroterpenoids.
- As has already been constantly recognized in many landmark total syntheses, the recognition of latent (潜在的) symmetry in a target molecule would drastically simplify the task at hand. (表现某种策略、方 法的优越性)

Thanks for your attentions!