

Dynamic Kinetic Resolution of Allylic Azides

Reporter: Bo Wu Checker: Yu-Qing Bai Date: 2021/06/07

Ott, A. A.; Goshey, C. S.; Topczewski, J. J. J. Am. Chem. Soc. **2017**, *139*, 7737 Liu, E.-C.; Topczewski, J. J. J. Am. Chem. Soc. **2021**, *143*, 5308

2 Dynamic Kinetic Resolution of Allylic Azides

.....

CV of Prof. Joseph J. Topczewski

Background:

- **2007** B. S., University of Wisconsin at Parkside
- **2011** Ph. D., University of Iowa (with Prof. David Wiemer)
- 2011-2013 Postdoc., University of Iowa (with Prof. Hien M. Nguyen and Daniel M. Quinn)
- **2013-2015** Postdoc., University of Michigan (with Prof. Melanie Sanford)
- 2015-present Assistant Professor, University of Minnesota Twin Cities

Research Interests:

 Development of highly selective reactions, reactions that exploit dynamic systems, the selective differentiation of allylic azides.

Winstein Rearrangement

Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960, 82, 5956

Possible Mechanism for Winstein Rearrangement

Carlson, A. S.; Topczewski, J. J. Org. Biomol. Chem. 2019, 17, 4406

Coupling with CuAAC

Feldman, A. K.; Sharpless, K. B.; Fokin, V. V. J. Am.Chem. Soc. 2005, 127, 13444

Coupling with Schmidt Reaction

Liu, R.; Gutierrez, O.; Tantillo, D. J.; Aubé, J. J. Am. Chem. Soc. 2012, 134, 6528

Dynamic Kinetic Resolution of Allylic Azides

Limitations of DKR:

- Requirement for a mechanistic pathway for racemization
- Common need for two separate catalysts
- Delicate balance of relative rates in the synchronized catalytic cycles

DKR of Allylic Azides via SAD

Ott, A. A.; Goshey, C. S.; Topczewski, J. J. J. Am. Chem. Soc. 2017, 139, 7737

Substrate Scope

Ar	$\frac{N_3}{Ar} = \frac{OsO_4, L,}{K_2CO_3,}$ 1	$ \frac{\text{MeSO}_2\text{NH}_2}{\text{K}_3\text{Fe}(\text{CN})_6} \qquad \text{Ar} \qquad \qquad$	N_3 OH N_3 Ar + $ArOH2$ (major) 3	OH OH (minor)
Entry	Ar	Yield (%)	Ee of 2 (%)	Dr
1	C_6H_5	79	98	11:1
2	4- ^t BuC ₆ H ₄	77	98	10:1
3	4- ⁱ BuC ₆ H ₄	81	90	10:1
4	$4-FC_6H_4$	75	96	9.5:1
5	$4-CIC_6H_4$	80	96	10:1
6	$4-BrC_6H_4$	72	96	9:1
7	$4-F_3CC_6H_4$	73	94	9:1
8	$3-FC_6H_4$	76	96	9:1
9	$3-CIC_6H_4$	81	94	10:1

Substrate Scope

DKR of Allylic Azides *via* E-CuAAC

Liu, E.-C.; Topczewski, J. J. J. Am. Chem. Soc. 2019, 141, 5135

DKR of Allylic Azides via E-NiAAC

Liu, E.-C.; Topczewski, J. J. J. Am. Chem. Soc. 2021, 143, 5308

DKR of Allylic Azides via E-NiAAC

Entry ^a	L	Solvent	T (°C)	Yield (%) ^b	Ee (%) ^c
1	L1	Dioxane	50	0	
2	L2	Dioxane	50	11	2
3	L3	Dioxane	50	27	22
4	L4	Dioxane	50	56	66
5	L5	Dioxane	50	52	74
6	L6	Dioxane	50	0	
7	L5	Hexanes	50	82	66
8	L5	DCE	50	0	
9	L5	Toluene	50	62	78
10	L5	Toluene	60	56	76
11	L5	Toluene	40	56	82
12 ^d	L5	Toluene	40	86	80

^{*a*} Reaction conditions: **4a** (0.05 mmol), **5a** (0.075 mmol), Ni(COD)₂ (10 mol%), **L** (10 mol%), toluene (0.50 mL). ^{*b*} Yields were determined by SFC analysis using 2',4',6'-trimethylacetophenone as an internal standard. ^{*c*} Enantiomeric ratios were determined by SFC with a chiral stationary phase. ^{*d*} Toluene (0.20 mL).

Substrate Scope

Substrate Scope

Mechanistic Studies

At very early time points, a slight enrichment of the azide er was measurable (up to 55:45), indicating that this DKR likely occurs in a nonideal kinetic regime.

Mechanistic Studies

The E-NiAAC reaction did not demonstrate a nonlinear effect, indicating that only 1 equiv of ligand L5 is involved in the enantiodetermining step.

Mechanistic Studies

The reaction was found to be first-order in catalyst by initial rates.

Tentative Mechanism of NiAAC

Kim, W. G.; Kang, M. E.; Hong, S. Y. J. Am. Chem. Soc. 2017, 139, 12121

Summary

Title

Enantioselective Nickel-Catalyzed Alkyne-Azide Cycloaddition by Dynamic Kinetic Resolution

Writing Strategy

The features and limitations of Cucatalyzed alkyne-azide cycloaddition

Other metal catalytic systems for alkyneazide cycloaddition and their features In 2002, Sharpless and Meldal made contemporaneous disclosures that copper could catalyze the alkyne-azide cycloaddition reaction (CuAAC). CuAAC provides exquisite regioselectivity for the 1,4-disubstituted triazole and is the quintessential "click" reaction. With a few noted exceptions, CuAAC is traditionally limited to terminal alkynes. Other metals can catalyze the alkyne-azide cycloaddition reaction, including zinc, rhodium, silver, iridium, nickel, and gold. These reactions often provide complementary selectivity or reactivity relative to CuAAC. For instance, the ruthenium-catalyzed alkyne-azide cycloaddition (RuAAC) typically affords 1,5-disubstituted 1,2,3-triazole products.

The Last Paragraph

Writing Strategy

In conclusion, ligand **L5** can promote an E-NiAAC reaction by DKR. This is the first enantioselective alkyne-azide cycloaddition that is reported to be catalyzed by a metal other than copper. The E-NiAAC reaction provides synthetic access to 1,4,5-trisubstituted α -chiral triazoles that are not directly accessible by E-CuAAC. Furthermore, preliminary mechanistic experiments indicate that the nature of the NiAAC catalyst is a monometallic L₁ species, which is distinct from CuAAC.

Title

Dynamic Kinetic Resolution of Allylic Azides via Asymmetric Dihydroxylation

Writing Strategy

Winstein rearrangement and the synthetic applications

Hypothesis for the application of Winstein rearrangement in DKR

The seminal report describing the rearrangement of allylic azides was authored by Winstein in 1960. The rearrangement, which is thought to occur via a sigmatropic process, typically occurs at or near room temperature. While the Winstein rearrangement has been observed in many contexts, selectivity challenges inherent in the azide mixture have limited its synthetic applications. In 2005, Sharpless and co-workers reported that site-selectivity could be achieved in some instances by exploiting different alkene substitution patterns. Subsequently, it was shown by Aubé and co-workers that the equilibrating mixture of azides could be differentially functionalized in an intramolecular Schmidt reaction that differentiated the azides based on the relative rates of ring closure. Based on this precedent, we hypothesized that the Winstein rearrangement could be used as the racemization pathway in a dynamic kinetic resolution. Herein, we report the successful achievement of this goal.

Robust synthetic access has enabled triazole incorporation into numerous discovery efforts. (阐述进展)

While E-CuAAC reactions have advanced, enantioselective variants of other metal-catalyzed alkyne-azide cycloadditions have remained elusive. (引出发展新方法的意义)

The PYBOX scaffold (L2) is privileged in E-CuAAC reactions; however, this reactivity did not translate to the NiAAC system. (条件 优化)

Both electron-rich (3i) and electron-deficient (3j) heterocycles could be incorporated. (底物拓展)

Acknowledgement

Thanks for your attention