Literature Report VIII

Asymmetric Total Synthesis of Pre-schisanartanin C

Reporter: Xin-Wei Wang

Checker: Chang-Bin Yu

Date: 2020-06-09

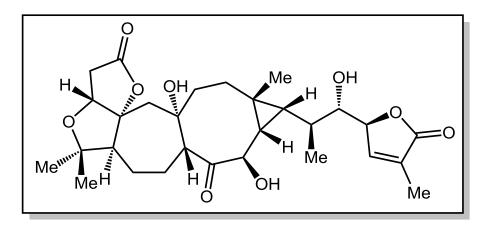
Yang, Z. et al. J. Am. Chem. Soc. 2020, 142, 573-580.

CV of Prof. Zhen Yang

Zhen Yang

Background:

- □ 1978-1986 B.S. & M.S., Shenyang Pharmaceutical University
- □ 1989-1992 Ph.D., The Chinese University of Hong Kong
- □ 1992-1995 Postdoctoral, Scripps Research Institute
- □ 1995-1998 Assistant Professor, Scripps Research Institute
- □ 1998-2001 Institute Fellow, Harvard University
- **□ 2001-present** Professor, Peking University


Research:

Developing novel synthetic methodologies and strategies, then applying them to the syntheses of complex natural products.

Contents

- 1 Introduction
- First Generation of Synthetic Strategy
- 3 Second Generation of Synthetic Strategy
- 4 Summary

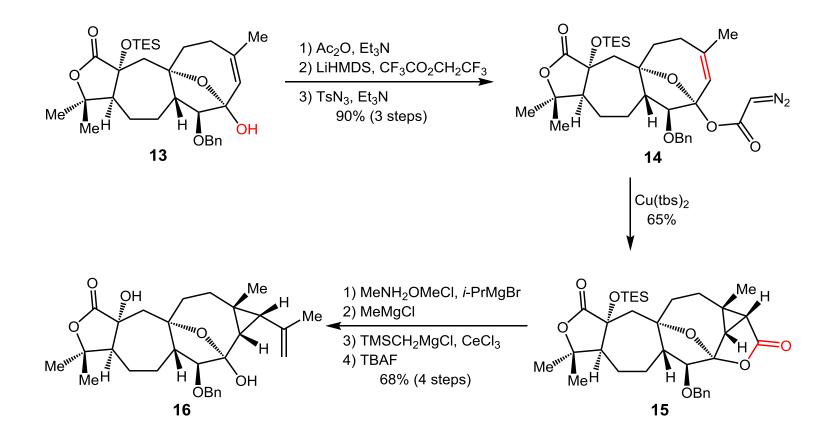
Introduction

Pre-schisanartanin C (1)

Schisandra propinqua var. propinqua

- Pre-schisanartanin C was isolated from the medicinal plant Schisandra propinqua var. propinqua by Sun and coworkers in 2010;
- It possessed 12 stereocenters, highly substituted bicyclo[6.1.0]nonane core and a highly labile α-hydroxy ketone motif;
- Its absolute configuration is still unknown.

Retrosynthetic Analysis of 1- First Generation


Retrosynthetic Analysis of 1- First Generation

Synthesis of compound 13

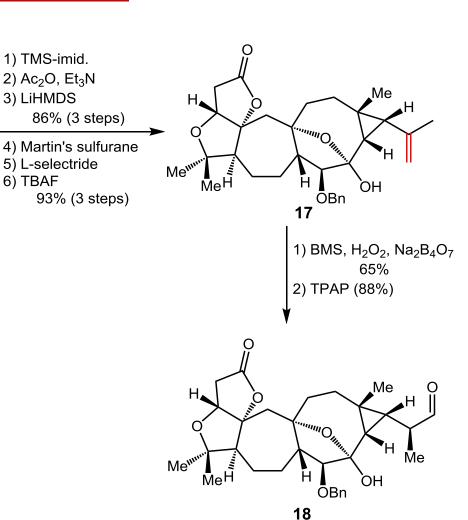
β-keto ester homologation protocol

Zercher, C. K. et al. J. Org. Chem. 1997, 62, 6444.

Synthesis of 16

Synthesis of Aldehyde 18

1) TMS-imid. 2) Ac₂O, Et₃N


3) LiHMDS

5) L-selectride

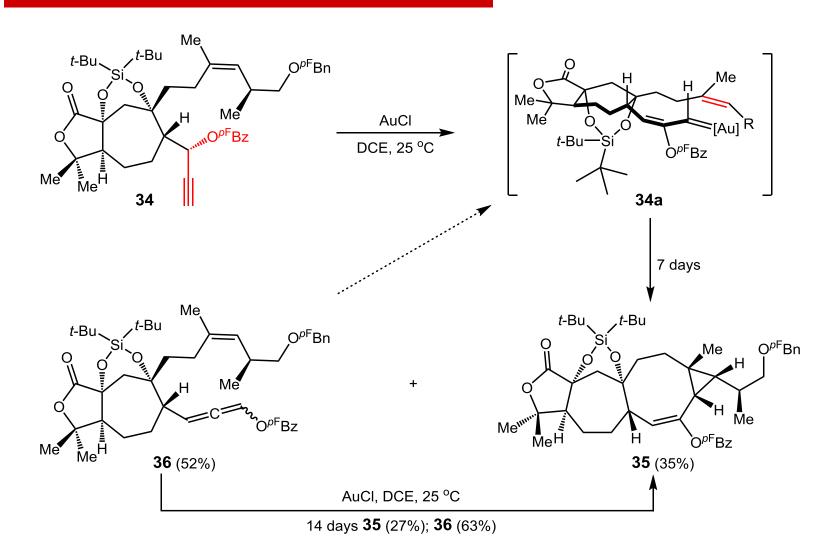
6) TBAF

86% (3 steps)

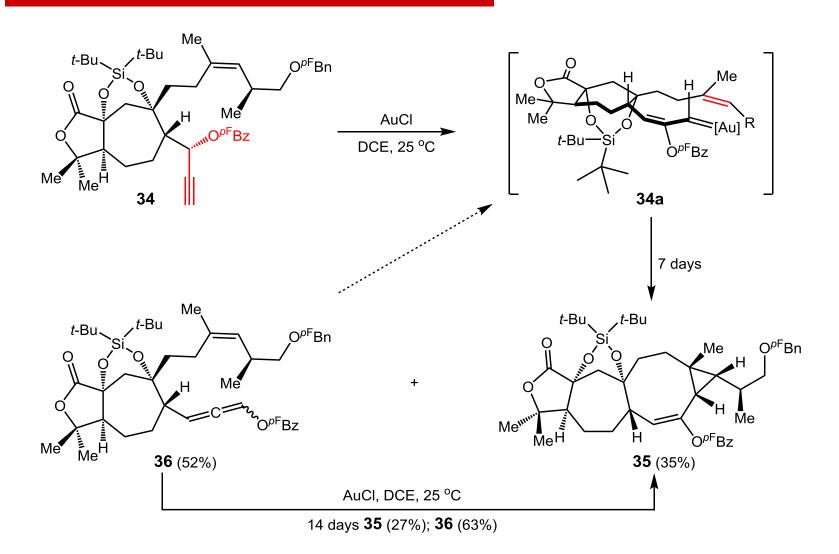
93% (3 steps)

31 steps, 1.42% yield

Retrosynthetic Analysis of 1- Second Generation


Retrosynthetic Analysis of 1- Second Generation

Synthesis of Compound 25


Synthesis of 32

Synthesis of Enyne 34

Au-Catalyzed Enyne Cyclization

Au-Catalyzed Enyne Cyclization

Synthesis of Ketone 40

Synthesis of diene 44

Takai Reaction

$$H \longrightarrow CrCl_{2} \qquad H \longrightarrow CrCl_{2} \qquad H \longrightarrow Cr^{|||}Cl_{2}$$

$$Cr^{|||}Cl_{2} \qquad H \longrightarrow Cr^{|||}Cl_{2}$$

$$Cr^{|||}Cl_{2} \qquad Cr^{|||}Cl_{2}$$

From Name Reactions

Completion of the Synthesis of 1

Summary

- 24 steps, 0.49 % overall yield;
- Gold-catalyzed intramolecular cyclopropanation of a 1,8-enyne substrate to prepare a bicyclo[6.1.0]nonane core;
- An asymmetric Diels-Alder reaction to install the initial stereogenic center;
- A regio- and stereoselective Sharpless asymmetric dihydroxylation, and a subsequent intramolecular lactonization.

The First Paragraph

Writing Strategy

Origin of Pre-schisanartanin C

The structure and configuration

The First Paragraph

Pre-schisanartanin C, which is a typical Schisandra nortriterpenoid, was isolated from the medicinal plant Schisandra propinqua var. propinqua by Sun and coworkers in 2010. The structure and relative configuration of 1 were determined using NMR spectroscopy; however, its absolute configuration is still unknown.

The Last Paragraph

Writing Strategy

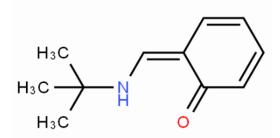
Summary of this work

Important steps of this synthesis

The significance of this work

The Last Paragraph

We have achieved an enantioselective recently total synthesis of 1 in 24 steps from diene 19 with 0.49% overall yield or 1.3% overall yield based on recovered starting material. This synthesis featured (i) an asymmetric Diels-Alder reaction of diene and dienophile to install the initial stereogenic center of our target molecule, (ii) a Au-catalyzed intramolecular enyne cyclization to stereoselectively form the central bicyclo[6.1.0]nonane core, an Al(O^tBu)₃-isomerization for diastereoselective installation of the hydroxy ketone motif, and (iii) a Sharpless asymmetric dihydroxylation for regio- and stereoselective installation of the stereogenic centers. The developed chemistry lays a foundation for a planned access to the total syntheses of other family members bearing highly bicyclo[6.1.0]-nonane cores.


Representative Examples

The structure and relative configuration of 1 were determined using NMR spectroscopy. (对测定方法的描述)

This synthesis featured (i) an asymmetric Diels-Alder reaction of diene and dienophile to install the initial stereogenic center of our target molecule. (构建立体中心的描述)

The developed chemistry lays a foundation for a planned access to the total syntheses of other family members bearing highly rigid bicyclo[6.1.0]-nonane cores. (奠定基础的描述)

Thanks for your attention

(6Z)-6-[(tert-butylamino)methylidene]cyclohexa-2,4-dien-1-one, Cu(TBS)₂ Tris(2,6-dimethyl-3,5-heptanedionato)iron(III), Fe(dibm)₃

RuO₄
$$\ominus$$
 N

Tetra-n-propylammonium perruthenate

$$ZnEt_2 + TFA + CH_2I_2 \longrightarrow ICH_2ZnOCOCF_3$$