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ABSTRACT: Selective oxidation of the γ-C−H bonds from abundant amine feedstocks via palladium catalysis is a valuable
transformation in synthesis and medicinal chemistry. Despite advances on this topic in the past decade, there remain two significant
limitations: C−H activation of aliphatic amines requires an exogenous directing group except for sterically hindered α-tertiary
amines, and a practical catalytic system for C(sp3)−H hydroxylation using a green oxidant, such as oxygen or aqueous hydrogen
peroxide, has not been developed to date. Herein, we report a ligand-enabled selective γ-C(sp3)−H hydroxylation using sustainable
aqueous hydrogen peroxide (7.5−10%, w/w). Enabled by a CarboxPyridone ligand, a series of primary amines (1°), piperidines, and
morpholines (2°) were hydroxylated at the γ-position with excellent monoselectivity. This method provides an avenue for the
synthesis of a wide range of amines, including γ-amino alcohols, β-amino acids, and azetidines. The retention of chirality in the
reaction allows rapid access to chiral amines starting from the abundant chiral amine pool.

γ-Hydroxylated amines are not only common motifs in
pharmaceuticals and natural products (Scheme 1A), but also
versatile building blocks for organic syntheses.1 Considering
the abundant amine feedstocks and ready availability of chiral
amines through established asymmetric methodologies,2 the
development of Pd(II)-catalyzed γ-C−H oxygenation of
aliphatic amines could provide a versatile synthetic access to
diverse γ-hydroxylated amines.3 However, the most common
free amines are not compatible with Pd(II) catalysts because
the α-hydrogen in amines is more susceptible to oxidation
leading to imines or carbonyl compounds.4 In addition, the
formation of unreactive bis(amine) palladium complexes with
amine substrate is also a major hurdle.5 Except for C−H
acyloxylation of using strongly coordinating directing groups6,7

and transient directing groups,8 free amine substrates are
largely limited to bulky protected amino alcohols9 or amines
containing an α-quaternary center10 (Scheme 1B). Notably,
these catalytic reactions typically afford a mixture of mono- and
diacetoxylated products. Therefore, a practical and general
catalytic system for monoselective γ-C−H hydroxylation of
free aliphatic amines remains elusive (Scheme 1C).

In addition to the difficulty associated with the C−H
activation of free amines, identification of an environmentally
friendly and sustainable oxidant for oxidatively sensitive amines
is another formidable challenge. Although our first entry into
Pd(II)-catalyzed C−H oxygenation reactions investigated the
use of tert-butyl peroxide as the oxidant, success in using
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Scheme 1. Pd(II)-Catalyzed γ-C−H Oxygenation of Amines
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inexpensive peroxides largely requires installation of strongly
coordinating directing groups.11 In particular, unlike the
biomimetic metal-oxo chemistry,12 the sustainable and
practical aqueous hydrogen peroxides are largely incompatible
with transition metal catalysts; for example, rapid decom-
position by Pd(II) catalysts was established in Wacker
oxidation catalysis. The Vedernikov group showed that the
arylpalladium(II) complex can be oxidized by hydrogen
peroxide to give a hydroxo-palladium(IV) complex in the
presence of di-2-pyridyl ketone ligand.13 Through the
development of bifunctional pyridine ligands, we have recently
realized the first example of C(sp2)−H hydroxylation of
phenylacetic acids and benzoic acids using aqueous hydrogen
peroxide.14 Herein, we report an unprecedented C(sp3)−H
hydroxylation of a wide range of free amines using aqueous
hydrogen peroxide (7.5−10%, w/w) as the sole oxidant
(Scheme 1D). The use of a bifunctional carboxyl-pyridine
ligand is essential for this reaction to proceed. The one-pot
formation of γ-amino alcohols with the amino group
monoselectively protected allows subsequent synthetic elabo-
rations. Valuable β-amino acids and azetidines are also
prepared using these γ-amino alcohol intermediates.

Our exploratory study on γ-C(sp3)−H oxygenation of free
amines commenced with 3-aminopentane (1a) as a repre-
sentative substrate (Table 1). No desired product was obtained
in the absence of a ligand (entry 1). The essential role of
bifunctional ligands in enabling Pd(II)-catalyzed C−H

activation reactions prompted us to focus on ligand develop-
ment for this proposed transformation (entry 2, Table 1A).15

However, our early bifunctional monoprotected amino acid
(MPAA) ligands, including the α-amino acid ligand (L1) and
β-amino acid ligand (L2), were not effective for this reaction.
Building on the success that pyridone-based bidentate ligands
could promote C(sp3)−H functionalization of carboxylic acids,
a wide range of bifunctional ligands, such as oxime ether-
pyridone (L3),16a pyridine-pyridone (L4, L5),16b,c amide-
pyridone (L6),16d and sulfonamide-pyridone (L7),16e were
investigated for the oxidation of free amines. While these
ligands exhibited poor activity in the reaction, we could obtain
a small amount of desired hydroxylated product using X,X-type
ligands (L6, 6%; L7, 10%). We then turned our attention to
another important X,X-type ligand (CarboxPyridone), which
was shown to promote C(sp2)−H hydroxylation of phenyl-
acetic acids and benzoic acids using aqueous hydrogen
peroxide as the sole oxidant.14 Excitingly, six-membered
chelating L9 emerged as the most promising ligand for the
γ-C−H hydroxylation of free amines, which affords the
oxygenated product in 28% NMR yield. Interestingly, the
amino group was selectively protected with the free hydroxyl
intact, which is synthetically desirable. While extensive
modification of reaction conditions failed to improve the
yield, we were delighted to find that adding more water to the
reaction mixture to dilute lab-grade H2O2 (w/w, 30%) to 7.5%
improved the yield to 78% (entry 3, Table 1B). The optimum

Table 1. Optimization of the C(sp3)−H Hydroxylation of Free Aminesa,b

aConditions: 1a (0.1 mmol), Pd(OAc)2 (10 mol %), ligand (10 mol %), acid (2.0 equiv), H2O2 (30% aqueous solution, 3.0 equiv), and H2O (0−
420 μL) in THF (0.6 mL), 90 °C, 12 h. bYield was determined by 1H NMR using CH2Br2 as the internal standard.
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concentration of H2O2 is critical for the oxidation of alkyl-
palladium intermediate, as well as prevention of the
decomposition of H2O2. Other reaction parameters, including
palladium catalyst, solvent, oxidizing agent, and temperature,
were also screened to optimize this C−H hydroxylation
reaction (entries 4−6 and Tables S3−S6). Since the presence
of acid additive was found to be essential for this reaction to

proceed, a series of inorganic and organic acids were tested,
and the results showed that a number of acids can stabilize
amines by effectively inhibiting α-oxidation (entry 7, Table
1C). However, only acetic and formic acids were found to be
effective in promoting γ-C−H oxidation, which led to the
formation of amine products protected by these acids.

Table 2. Substrate Scope for the C(sp3)−H Hydroxylation of Free Aminesa,b

aConditions: Amines 1a−1am (0.1 mmol), Pd(OAc)2 (10 mol %), CarboxPyridone (10 mol %), acids (2.0 equiv), H2O2 (30% aqueous solution,
3.0 equiv), and H2O (90 μL) in THF (0.6 mL), 90 °C, 12 h. bIsolated yields. cTBHP (tert-butyl hydroperoxide) (70% aqueous solution, 3.0 equiv)
instead of H2O2.

dH2O (60 μL) in THF (0.9 mL). eDioxane (0.6 mL) instead of THF, at 80 °C. fPd(CH3CN)4(BF4)2 instead of Pd(OAc)2.
gCompound 1a (0.15 mmol, 1.5 equiv) was used.
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Having determined optimal conditions, we subjected a wide
range of commercially available amines to the hydroxylation
reaction conditions (Table 2). α-Substituted amines with short
alkyl chains (2a, 2b, 2e, and 2f) and long alkyl chains (2c, 2d),
as well as cycloalkyl (2g) and heteroalkyl (2h) substituents,
afforded the hydroxylated products in good yields. Further-
more, various aryl groups (2i−2n) were found to be
compatible without benzyl oxidation. Other aromatic rings,
such as naphthalene (2o), phenanthrene (2p), dibenzofuran
(2q), furan (2r), thiophene (2s), and benzofuran (2t), were
also well tolerated to give good to high yields. The versatility of
this method was demonstrated with both α-primary (2u−2w)
and α-tertiary amines (2x−2z). Cycloalkylamines with 5-
membered (2aa), 6-membered (2ab), and 7-membered (2ac)
rings, as well as 12-membered (2ad) and adamantane (2ae)
rings, were all suitable substrates that afforded good yields
(69−81%). Hydroxylation of the mixture of cis- and trans-
cyclopentylamine (2af) gave the cis-hydroxylated product in
38% yield, with no trans-hydroxylated product formed and
35% of the trans-cyclopentylamine retained. In contrast, both
cis- and trans-amines with 6- and 7-membered rings were
hydroxylated to give a mixture of diastereomers in 74% and
65% yield, respectively (2ag, 2ah). Notably, saturated
heterocycles, such as tetrahydropyran and piperidine, were
also compatible, and gave the desired product in moderate
yields (2ai, 2aj). Moreover, the secondary nitrogen on the
piperidine and morpholine rings could direct C−H hydrox-
ylation to give the products in good yields (2ak−2am). The
amide moieties could also be diversified by replacing the acetic
acid with other carboxylic acids (2an−2ar).

Asymmetric synthesis of optically pure diverse β-amino acids
remains a significant task.17 We envisaged that our oxygenation
strategy, combined with subsequent oxidation of the hydroxyl
group (for screening conditions, see Table S7), could provide a
versatile platform for the synthesis of β-amino acids from a
wide range of readily available chiral amines (Table 3). By
utilizing a one-pot approach, β3-amino acids (3a, 3h, 3k), β2-
amino acid (3u), β3,3-amino acid (3x), β2,2-amino acid (3v), β
2,3-amino acid (3e), β2,2,3-amino acid (3f), β2,3,3-amino acid
(3y), and cyclic β-amino acid (3ak) could be obtained in good

Table 3. One-Pot Synthesis of β-Amino Acidsa,b

aThe hydroxylation reaction was performed under conditions
matching those outlined in Table 2. Upon completion of the reaction,
the solvent was evaporated, and additional oxidation conditions were
subsequently introduced: pyridinium chlorochromate (PCC) (5 mol
%), H5IO6 (3.0 equiv) in 1,4-dioxane (1 mL), rt, 5 h. bIsolated yields.

Table 4. Synthesis of Azetidines

aCyclization conditions: (1) HBr (48% aq), 100 °C, 6 h; (2) TsCl,
Cs2CO3, CH3CN, 90 °C, 24 h. bCyclization conditions: (1) 1 M
NaOH aq, EtOH, reflux; (2) TsCl, Et3N, DCM, rt; (3) TsCl, KOH,
THF, reflux. cYields are based on the corresponding alcohols 2at−
2av. See the Supporting Information for the synthesis of secondary
alcohols 2at−2av from 2x.

Scheme 2. Proposed Catalytic Cycle
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to high yields. Various chiral amines were also converted to
optically pure chiral β-amino acids in one pot (3b, 3al, 3ag,
3as).

In light of the importance of azetidines in drug discovery,18

we investigated the feasibility of converting the hydroxylated
amine products into azetidines via cyclization (Table 4).
Amino alcohols could be readily deprotected and brominated
in a hydrobromic acid solution, followed by ring closure in the
presence of TsCl and Cs2CO3. This one-pot synthesis offered a
convenient method for the preparation of diverse azetidines,
including fused bicyclic (4ag, 4af) and spiro bicyclic (4w,
4aa−4ac). Commercially available L-isoleucinol was also
successfully converted to chiral azetidine using this approach
(4as). The initially formed primary alcohols could be
effectively converted to the secondary alcohols (2at−2av) in
good yields (65−72%, see the Supporting Information). These
amino alcohols were also compatible with the cyclization
protocol, thereby further broadening the range of azetidines
(4at−4av).

The formation of the monoprotected amino alcohols is
intriguing. To gain further insights into this reaction, we
conducted several control experiments (Figure S5). First, we
observed that the acetyl-protected amine did not yield any
product under the standard conditions, thereby suggesting that
the active substrate involved in the C−H activation is a
nonprotected amine. Second, free amino alcohols remain intact
without any protection under the standard reaction conditions.
Instead, the O-acetyl amino alcohol 5 was readily converted
into the acetyl-protected amine 2b as the desired product.
These observations suggest that C−H acetoxylation occurs
initially, followed by a subsequent acetyl migration step leading
to the formation of the monoprotected amino alcohols.19 On
the basis of these studies, a Pd(II)/Pd(IV) catalytic cycle is
proposed (Scheme 2).11,14 The coordination of the Carbox-
Pyridone ligand with the palladium catalyst generates the
active catalyst. Following ligand-enabled C−H cleavage
through the concerted metalation−deprotonation (CMD)
mechanism, oxidative addition of H2O2 to Pd(II) forms the
high-valent Pd(IV) species. Subsequently, the Pd(IV) species
undergoes reductive elimination or an SN2-type reaction to
result in the formation of an acyloxylated intermediate 5, which
subsequently undergoes acetyl migration to give amino alcohol
products.

In summary, we have developed Pd(II)-catalyzed mono-
selective C(sp3)−H hydroxylation of primary amines, piper-
idines, and morpholines using aqueous hydrogen peroxide as a
green oxidant. Notably, this method also allows one-pot
synthesis of monoprotected γ-amino alcohols. The success of
this reaction critically hinges upon the presence of the
CarboxPyridone ligand, which prevents the formation of the
unreactive bis(amine) palladium complex and promotes the
oxidation of the alkyl-palladium intermediate by hydrogen
peroxide for the hydroxylation step to proceed.
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