

Literature Report VI

Catalytic σ -Bond Annulation with Ambiphilic Organohalides Enabled by β -X Elimination

Reporter: Yan-Jiang Yu

Checker: Shan-Shan Xun

Ni, H.-Q.; McAlpine, I. J.; Engle, K. M. *Angew. Chem. Int. Ed.* **2023**, e202306581

2023-07-10

CV of Prof. Keary Mark Engle

Group's goal:

- (Pre)Catalyst design, reaction discovery, mechanistic elucidation
- Advance the efficiency and sustainability of organic small molecules chemical synthesis

Background:

- 2003-2007 B.S., University of Michigan, Ann Arbor (Matzger, A. J.)
- 2008-2013 Ph.D., The Scripps Research Institute (Yu, J.-Q.)
- **2008-2013** Ph.D., The University of Oxford (Brown, J. M.)
- 2013-2015 Postdoc., California Institute of Technology (Grubbs, R. H.)
- □ 2015-2020 Assistant Professor, The Scripps Research Institute
- 2020-Now Professor, The Scripps Research Institute

Contents

- 1 Introduction
- Catalytic σ -Bond Annulation with Ambiphilic Organohalides Enabled by β -X Elimination
- 3 Summary

Liu, D.; Zhao, G.; Xiang, L. *Eur. J. Org. Chem.* **2010**, 2010, 3975 Binda, C.; Li, M.; Edmondson, D. E. *J. Med. Chem.* **2004**, 47, 1760

π-Bond annulation (established)

Carbooxygenation of alkenes

Nicolai, S.; Waser, J. Org. Lett. 2011, 13, 6324

Carboamination of alkenes

White, D. R.; Hutt, J. T.; Wolfe, J. P. J. Am. Chem. Soc. 2015, 137, 11246

Carboamination of alkenes

Liu, Z.; Wang, Y.; Engle, K. M. J. Am. Chem. Soc. 2017, 139, 11261

Aminoboronation of alkenes

Liu, Z.; Ni, H.-Q.; Engle, K. M. J. Am. Chem. Soc. 2018, 140, 3223

Carboamination of alkenes

Ni, H.-Q.; McAlpine, I. J.; Engle, K. M. Angew. Chem. Int. Ed. 2022, 61, e202114346

σ -bond annulation (underdeveloped)

Ni, H.-Q.; McAlpine, I. J.; Engle, K. M. Angew. Chem. Int. Ed. 2023, e202306581

Tran, V. T.; Yang, K. S.; Engle, K. M. Nat. Chem. 2018, 10, 1126

Project Synopsis

Ni, H.-Q.; McAlpine, I. J.; Engle, K. M. Angew. Chem. Int. Ed. 2023, e202306581

Optimization of Reaction Conditions

Entry	deviation from standard reaction	Yield (%) ^a
1	none	86 ^b
2	Pd(OAc) ₂ (5 mol%)	72
3	no AgOAc	15
4	CuCl ₂ (1.0 eq.) instead of AgOAc	<5
5	Cu(OAc) ₂ (1.0 equiv) instead of AgOAc	37
6	CsOPiv (1.0 equiv) instead of AgOAc	30
7	no 1-Ad-CO ₂ H	77
8	HFIP (1.0 M) as solvent	41
9	DCE (1.0 M) as solvent	52
10	60 °C	28

 $[^]a$ Values correspond to 1 H NMR yields using $Cl_2CHCHCl_2$ as internal standard. b Isolated yields. c 120 o C, n.d. = not detected.

Mechanistic Investigation

Deuterium exchange experiments

Viability of an Pd^{II}(π-alkene) intermediate

Proposed Mechanism

Summary

- **♣** Pd^{II}-catalyzed σ-bond annulation strategy
- **2.** Combining C-H activation and β -X elimination
- **!** Employing various alkyl C(sp³)-O, N, and S bonds
- Access 5- and 6-membered carbo- and heterocycles
- Cost drivers in unnatural amino acid synthesis

The First Paragraph

Writing strategy

The importance of heterocycles and carbocycles

The development of catalytic [n+2] (hetero)annulation

Catalytic σ -bond annulation by β -X elimination

- □ Heterocycles and carbocycles are common substructures in pharmaceuticals and natural products.
- Metal-catalyzed alkenes annulations with ambiphilic organohalide coupling partners are particularly useful. Simultaneous activation of C-H and C-heteroatom σ-bonds would be synthetically enabling, but this strategy remains largely undeveloped.
- We realized σ-bond annulation process via activation alkyl $C(sp^3)$ -X bonds by β-heteroatom elimination, thereby providing direct access to useful heterocycles from simple aliphatic starting materials.

The Last Paragraph

Writing strategy

Summary of this work

The advantages of this work

Highlight the utility of this transformation

- In conclusion, we report a Pd^{II}-catalyzed σ-bond annulation of aliphatic alcohol, amine, and thiol derivatives with ambiphilic organohalides to afford (hetero)cycles.
- The Method leverages sequential C-H activation and β-X elimination to generate a reactive Pd^{II}(π-alkene) intermediate.
- We highlight the utility of this transformation in the synthesis of optically pure (hetero)cycles from L-methionine and in σ -bond ring-opening/ring-closing transfiguration with low-strain heterocycles.

Representative Examples

Developing a toolkit of annulation methods that employ alternative substrate classes. (建立…的工具库)

We highlight the utility of this transformation in the synthesis of optically pure (hetero)cycles from L-methionine. (强调该方法在合成…中的实用性)

The inclusion of AgOAc is crucial for efficient catalytic turnover, as omitting it from the reaction or replacing it with other additives gave low conversion to product. (omit...from; omit: v. 省略,删除,遗漏; leave out)

Adamantane-1-carboxylic acid may also play a minor role in faciliatating reaction, as its omission led to slightly diminished yield. (*adj.* 减少的, 减弱的; diminish: *v.* 减少,降低;decrease)

Thanks for your attention