

Literature Report VIII

Rhodium-Catalyzed Enantio- and Regioselective Allylation of Indoles with *gem*-Difluorinated Cyclopropanes

Reporter: Yan-Jiang Yu

Checker: Hao-Dong Chen

Yang, H.; Lu, G.; Xia, Y. *Angew. Chem. Int. Ed.* **2024**, *63*, e202403602

2024-04-29

CV of Prof. Xia Ying

Group's goal:

- Transition Metal Catalyzed Small Ring Chemistry
- Asymmetric Catalysis
- Organic Fluorine Chemistry

Background:

- □ 2006-2010 B.S., Beijing Institute of Technology
- 2010-2015 Ph.D., Peking University
- □ 2015-2016 Postdoc., The University of Texas at Austin
- 2016-2019 Postdoc., The University of Chicago
- 2019-Now Professor, Sichuan University

Contents

- 1 Introduction
- Rh-Catalyzed Branched-selectivity Asymmetric Allylation of Indoles with *gem*-DFCPs
- 3 Summary

Qi, S.; Yang, J.; Zhang, J. Chin. J. Chem. 2024, 42, 823

Ring-strain	\triangle	H_F	F_F	F F	F F
Energy (kcal/mol)	27.1	32.9	42.4	54.0	62.0

Cyclopropane	Ring-strain Energy	Bond Length	Bond Angle	
F ₁ F	42.4 kcal/mol	r(C1-C2) 1.477 Å	∠C2-C1-C3 63.3°	
2 🛆 3		r(C2-C3) 1.550 Å	∠F-C1-F 109.6°	
H_H 2	27.1 kcal/mol	r(C-C) 1.515 Å	∠C-C-C 60.0°	
	27.1 KGal/IIIOI		∠H-C-H 114.5°	

Zeiger, D. N.; Liebman, J. F. *J. Mol. Structure* **2000**, *556*, 83 Dolbier, W. R.; Battiste, M. A. *Chem. Rev.* **2003**, *103*, 1071

Pd-catalyzed ring opening of *gem*-DFCPs to form C-N bond (linear-selectivity)

Xu, J.; Xiao, B.; Yu, C.-G.; Fu, Y. Angew. Chem. Int. Ed. 2015, 54, 8231

Pd-catalyzed ring opening of *gem*-DFCPs to form C-S bond (linear-selectivity)

Pd-catalyzed ring opening of *gem*-DFCPs to form C-P bond (linear-selectivity)

Sun, J.; X.-W.; Wu, X.-X. Org. Lett. 2023, 25, 5220

Pd-catalyzed ring opening of *gem*-DFCPs to form C-C bond (branched-selectivity)

Lv, L.; Li, C.-J. Angew. Chem. Int. Ed. 2021, 60, 13098

Pd-catalyzed ring opening of gem-DFCPs (branched-selectivity)

Lv, L.; Yan, X.; Li, Z. Chem. Sci. 2021, 12, 15511

Pd-catalyzed ring opening of gem-DFCPs (branched-selectivity)

Qian, H.; Cheng, Z.; Li, Z. J. Am. Chem. Soc. 2024, 146, 24

Pd-catalyzed ring opening of gem-DFCPs (branched-selectivity or linear-selectivity)

Wu, L.; Liang, Y.; Shi, Z. Chin. J. Chem. 2022, 40, 2345

Rh-catalyzed ring opening of *gem*-DFCPs (linear-selectivity)

Jiang, Z.-T.; Huang, J.; Xia, Y. Angew. Chem. Int. Ed. 2021, 60, 10626

Project Synopsis

Racemic or Achiral mono-Fluoroalkenes (Well-developed)

The Collection of Enantioenriched mono-Fluoroalkenes

Optimization of Reaction Conditions

Entry	Variations	Yield (%)	b/l	Ee (%)	
1	none	93 (92)	38:1	93	
2	no AgOTf	0	-	-	
3	AgPF ₆	53	25:1	89	
4	$AgBF_4$	56	25:1	69	
5	L2	86	11:1	31	
6	L3	82	9:1	31	
7	L4	72	4:1	15	
8	L5	86	1:1	48	
9	L6	15	26:1	93	
10	L7	0	-	-	
11	PhCl	91	31:1	91	
12	DCE	91	29:1	85	
13	THF, L2	36	1:1.3	29	

Substrate Scope

3a, R = H, 93% ee, 92% yield **3b**, R = Me, 91% ee, 57% yield

3g, 93% ee, 93% yield

3c, 89% ee, 68% yield

3h, X = F, 93% ee, 92% yield **3i**, X = Cl, 96% ee, 55% yield **3j**, X = Br, 95% ee, 49% yield

NH F

3d, R = OPh, 91% ee, 85% yield **3e**, R = OAc, 96% ee, 95% yield

3k, 91% ee, 95% yield

3f, 93% ee, 96% yield

3I, X = F, 96% ee, 53% yield **3m**, X = CI, 95% ee, 88% yield **3n**, X = Br, 97% ee, 95% yield

Substrate Scope

Substrate Scope

B: Scope of Indoles

3ab, 94% ee, 81% yield

3ac, 85% ee, 60% yield

3ad, 73% ee, 7% yield 81% ee, 70% yield (*R*)-BINAP

3ae, 95% ee, 5% yield

73% ee, 46% yield b/l = 4:1, (*R*)-SegPhos

3af, 95% ee, 90% yield

3ag, 41% ee, 15% yield

89% ee, 77% yield b/l = 6:1, (*R*)-BINAP

3ah, no reaction

99% ee, 51% yield b/l = 14:1, (*R*)-BINAP

Synthetic Application

Mechanistic Studies

Mechanistic Studies

Other Aromatic Heterocycles-

Proposed Mechanism

Summary

- Exclusive Branched-selectivity
- Excellent Enantioselectivity

- Good Functional Group Tolerance

The First Paragraph

Writing strategy

The importance of mono-fluoroalkenes compounds

The synthesis of mono-fluoroalkenes

Rh-catalyzed asymmetric allylic Of *gem*-DFCPs

- Organofluorine compounds occupy a significant place in pharmaceutical chemistry and material science. Among various fluorinated motifs, the mono-fluoroalkenes have consistently attracted attention from the synthetic community.
- Despite these significant achievements that have been made in the synthesis of racemic or achiral mono-fluoroalkenes, a strategy for the collection of enantioenriched α-mono-fluoroalkenes using gem-DFCPs as fluoroallyl surrogates has not yet been realized.
- ☐ Herein, we disclosed the first Rh-catalyzed branched-regioselective and enantioselective allylic coupling between *gem*-DFCPs and indoles.

The Last Paragraph

Writing strategy

Summary of this work

In conclusion, we have developed an efficient access to highly branched and enantioselective allylic coupling of indoles with *gem*-DFCPs using rhodium catalysis. This reaction is the first example with high enantioselectivity and high branchedregioselectivity in the ring opening coupling of *gem*-DFCPs, to afford C2 and C3 fluoroallylated products.

Outlook of this work

■ Further study on the understanding of the stereochemistry and the origin of the branched regioselectivity is currently underway in our laboratory.

Representative Examples

A strategy for the collection of enantioenriched α -mono-fluoroalkenes using *gem*-DFCPs as fluoroallyl surrogates has not yet been realized. (代用品,代理,替代物)

Taking together, the efficient kinetic resolution process (*via* oxidative addition) and the high stereospecificity of the allylation process with L1 as the bulky ligand account for the observed high enantioselectivity of the reaction.(总的来看,综合起来;表意是"所讨论的想法是通过组合多个因素组成的")

While more investigations are required to understand the origin of the branched selectivity, this observation underscores the privileged nucleophilicity of indoles in controlling the regioselectivity (underscore, vt. 强调, 着重说明; underscores, n. 下划线, 底线)

Thanks for your attention