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ABSTRACT: Chiral phosphoric acid-catalyzed transfer hydrogenation of 2-hydroxypyrimidines has been successfully realized
using Hantzsch ester or dihydrophenanthridine as the hydrogen source, furnishing the chiral 3,4-dihydropyrimidin-2(1H)-ones
(DHPMs) with excellent yields and enantioselectivities of ≤99%. Notably, a novel kind of chiral DHPMs with an alkyl
stereogenic center can be prepared through highly chemoselective transfer hydrogenation.

F unctionalized 3,4-dihydropyrimidin-2(1H)-ones
(DHPMs), the products of the well-known Biginelli

three-component condensation reaction,1 possess a wide
range of pharmacological properties, including anticancer
activity, calcium channel inhibition, anti-inflammatory activity,
antibacterial activity, etc.2 Intensive research has suggested that
both enantioisomers of DHPMs often show very different or
even opposite biological activies. For example, the (S)-
enantiomer of Monastrol is a more potent inhibitor of Eg5
ATPase activity than the (R)-enantiomer,3 and (R)-SQ 32926
presents >400-fold more antihypertensive activity as a calcium
channel blocker than its (S)-enantiomer4 (Figure 1). There-
fore, highly enantioselective synthesis of optically pure
DHPMs is undoubtedly a desirable objective.

Conceptually, asymmetric catalytic Biginelli reaction is the
most straightforward approach to chiral DHPMs (Scheme 1).5

However, the preparation of this kind of important compound
always relied on the resolution of a racemic mixture4,6 and
chiral auxiliary-assisted synthesis7 until a breakthrough was
made in the asymmetric catalytic Biginelli reaction. In 2005, a

new chiral ytterbium complex was designed and synthesized in
Zhu’s lab; they were able to catalyze the asymmetric Biginelli
reaction with unprecedented enantioselectivity (80−99% ee).8

Shortly afterward, Gong and co-workers reported the first
organocatalytic enantioselective Biginelli reaction using a
BINOL-derived chiral phosphoric acid as a catalyst, giving
structurally diverse DHPMs with high ee’s.9 Feng described an
enantioselective Biginelli reaction catalyzed by a chiral simple
secondary amine combined with an achiral Brønsted acid in a
dual activation mode.10 Since then, a variety of catalysts have
been successfully developed to promote this useful trans-
formation, such as chiral Brønsted acids,11 proline deriva-
tives,12 prime amines,13 etc. Despite achievements with respect
to the asymmetric Biginelli reaction, new approaches to chiral
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Figure 1. Chiral DHPMs with pharmacological activities.

Scheme 1. Enantioselective Catalytic Synthesis of Chiral
3,4-Dihydropyrimidin-2-ones
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DHPMs are still of great value. In fact, asymmetric hydro-
genation of aromatic compounds has been proven to be highly
effective for preparing chiral cyclic molecules.14 Partial
reduction of pyrimidin-2-one may also directly produce the
Beginelli-type DHPMs based on retrosynthetic analysis.
Very recently, our group realized an asymmetric hydro-

genation of 2-hydroxypyrimidines using a chiral Pd or Ir
catalyst to produce chiral cyclic ureas or DHPMs with high
ee’s, which presents a new facile method for synthesizing these
kinds of important compounds.15a,b Herein, we disclose the
first asymmetric biomimetic transfer hydrogenation of
pyrimidines catalyzed by chiral phosphoric acid with Hantzsch
ester or dihydrophenanthridine (DHPD) as a hydride donor,
furnishing chiral DHPMs with excellent enantioselectivity and
chemoselectivity.
With ethyl 2-hydroxy-4,6-diphenylpyrimidine-5-carboxylate

(1a) as the model substrate, we began the pursuit of the
enantioselective transfer hydrogenation for the synthesis of
chiral DHPMs. Initially, solvent effects were evaluated with
one representative set of reaction conditions exemplified in
Table 1 (entries 1−6). In most solvents, this transformation

could smoothly occur in the presence of CPA 3a and Hantzsch
ester 4a, giving the desired chiral DHPMs 2a in a good isolated
yield, but toluene gave the best in terms of both yield and
enantioselectivity (entry 5). When HEH 4c with a bulky tert-
butyl group was used as the hydride donor, the yield
dramatically decreased to only 63% (entry 8). Next, different
CPAs were screened with 4a in toluene (entries 9−13). The
results showed that the catalysts bearing a bulky substituent at
C3 exhibit more prominent enantioselectivities. To our delight,

CPA 3f was selected as the best because of the 99% yield and
94% ee (entry 13).
Having defined an optimal reaction protocol, we explored

the substrate scope to test the generality (Scheme 2). In

general, a variety of 2-hydroxy-4,6-diarylpyrimidine-5-carbox-
ylate derivatives 1 were converted into chiral DHPMs 2 with
good enantioselectivities and yields. It appears that both the
yield and the enantioselectivity are very sensitive to the
position of the substituents on the phenyl ring. The substrates
with a para-substituted phenyl group (2b) underwent the
reaction to afford the reduced product with moderate
enantioselectivities (83% ee). With a meta-substituted phenyl
group (2c−2f), DHPMs were furnished with enantioselectiv-
ities (≤97% ee) much higher than those seen for the substrates
bearing a phenyl substituent at position 4. An ortho substituent
group at the phenyl ring would suppress this reduction process
completely due to steric hindrance. Replacement of the ethyl
ester with methyl (2g−2i), tert-butyl ester (2j), or amide (2k)
in the parent substrate maintained high enantioselectivities
(from 92% to 99% ee) and yields. Ethyl 2-hydroxy-4,6-
dimethylpyrimidine-5-carboxylate also was tested, and only a
low ee obtained, albeit with a 97% yield (2l).
Next, we turned our attention to multisubstituted 2-

hydroxypyrimidines 5 with an unsymmetrical structure,
which may lead to the more classic Biginelli products. In the
initial investigation, an inseparable mixture of 6a and 7a was
obtained under the standard reaction condition. After careful
reoptimization of the condition, excellent chemoselectivity can
be achieved with DHPD used as an alternative hydride

Table 1. Evaluation of Reaction Parametersa

entry solvent CPA HEH (R) yieldb (%) eec (%)

1 THF 3a 4a (Et) 97 40
2 CH2Cl2 3a 4a (Et) 94 58
3 EtOAc 3a 4a (Et) 99 47
4 1,4-dioxane 3a 4a (Et) 94 38
5 toluene 3a 4a (Et) 99 69
6 benzene 3a 4a (Et) 97 66
7 toluene 3a 4b (Me) 94 65
8 toluene 3a 4c (tBu) 63 69
9 toluene 3b 4a (Et) 88 74
10 toluene 3c 4a (Et) 97 70
11 toluene 3d 4a (Et) 66 91
12 toluene 3e 4a (Et) 78 92
13 toluene 3f 4a (Et) 99 94

aReaction condition: 1a (0.1 mmol), CPA 3 (5.0 mol %), HEH (1.2
equiv), solvent (2.0 mL), 24 h, 40 °C. bIsolated yields. cDetermined
by chiral HPLC analysis.

Scheme 2. Substrate Scopea

aReaction conditions: 1 (0.2 mmol), CPA 3f (5.0 mol %), HEH 4a
(1.2 equiv), toluene (4.0 mL), 24 h, 40 °C.
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donor.16 This improvement in chemoselectivity is possibly
attributed to the discrepancy between the hydride transfer
abilities of Hantzsch ester and dihydrophenanthridine. With a
hydride donor that was weaker than Hantzsch ester, DHPD
could be a proper reductant in accessing selective hydro-
genation of molecules containing more than one unsaturated
bond.16b It is interesting that compound 6a was detected
exclusively in the crude reaction mixture in moderate
enantioselectivity (77% ee). To the best of our knowledge,
effective synthesis of DHPMs with an alkyl-substituted chiral
center is still rare. Some novel chiral DHPMs with a methyl-
substituted chiral carbon atom at position 4 were prepared
with good yields and moderate ee’s (Scheme 3). Unfortu-
nately, this kind of reduction failed to occur upon further study
of the scope of other alkyl-substituted substrates.

To demonstrate the practical utility of this method, chiral
DHPM 2a was prepared on a gram scale with a 98% yield and
94% ee under the optimal conditions. After one recrystalliza-
tion, the ee increased to >99%. Treating 2a with Lawesson’s
reagent gave the corresponding 3,4-dihydropyrimidin-2(1H)-
thione 8 in nearly quantitative yield without any loss of ee
(Scheme 4). This procedure provides new access to a wide
spectrum of structurally diverse dihydropyrimidinethiones and
their pharmaceutically relevant derivatives with high enantio-
meric purity.9

On the basis of the experimental results presented above and
the related research,14h a plausible stepwise hydrogenation
process was proposed (Scheme 5). First, the chiral phosphoric
acid facilitated the reversible isomerization to form the active
tautomer 9. Second, the CN bond of 9 was hydrogenated to
give the final chiral product. The origin of enantioselectivity
can be explained by the stereochemical model as illustrated in
Scheme 5. These two hydrogen bonding interactions and the
effect of steric hindrance build up the “three-point contact

model” via re face attachment that determines the stereo-
selectivity.
In conclusion, we reported the first asymmetric biomimetic

transfer hydrogenation of pyrimidines catalyzed by chiral
phosphoric acid, successfully furnishing chiral DHPMs with
excellent yields and enantioselectivities (≤99% ee). In
particular, novel chiral DHPMs with an alkyl stereogenic
center can be prepared through highly chemoselective transfer
hydrogenation, which has seldom been previously described.
The detailed investigation of the potential bioactivity of this
new kind of chiral DHPM is ongoing in our cooperative lab.

■ EXPERIMENTAL SECTION
Commercially available reagents were used without further
purification. Solvents were treated prior to use according to the
standard methods. 1H NMR, 13C{1H} NMR, and 19F NMR spectra
were recorded at room temperature in CDCl3 on a 400 MHz
instrument with tetramethylsilane (TMS) as the internal standard.
The enantiomeric excess was determined by HPLC analysis, using the
chiral column described below in detail. Optical rotations were
measured with a polarimeter. Flash column chromatography was
performed on silica gel (200−300 mesh).

General Procedure for Trisubstituted 2-Hydroxypyrimi-
dines. Trisubstituted 2-hydroxypyrimidine derivatives 1 can be
conveniently prepared according to the known literature procedure
with some minor modifications.1 Among them, compounds 1a,15a

1d,15a 1e,15a 1j,15a 5a and 5b,17a 5c,17b and 5d−5f17c are known (see
Scheme S1).

Copper(II) trifluoromethanesulfonate (0.271 g, 5.0 mol %) was
added to a solution of aldehyde (15.0 mmol), urea (1.08 g, 18.0
mmol), and ethyl 3-oxo-3-arylpropanoate (15.0 mmol) in 40 mL of
ethanol. After being heated at 80 °C under nitrogen for 24 h in an oil
bath, the reaction mixture was cooled to 0 °C, and the precipitate was
collected by filtration and dried. The resulting white powder was
triturated with cooled ethanol to afford S-1 or S-5 as a pale yellow
powder.

A solution of (S-)1 or (S-)5 (3.0 mmol), CuCl2·2H2O (5.0 mg, 1.0
mol %), and potassium carbonate (41 mg, 10 mol %) in
dichloromethane (6.0 mL) was heated at 40 °C for 30 min in an
oil bath, and then 65 wt % tert-butyl hydroperoxide (0.832 g, 6.0
mmol) was added dropwise over a period of 10 min. The resulting
mixture was stirred at 35 °C for 24 h in an oil bath. Saturated aqueous
sodium thiosulfate (10 mL) was added to quench the excess tert-butyl
hydroperoxide. After being stirred for 20 min, the mixture was
extracted with dichloromethane (3 × 40 mL). The combined organic
layer was dried over anhydrous sodium sulfate and concentrated in
vacuo. The crude product was purified by flash column chromatog-

Scheme 3. Enantioselective Transfer Hydrogenation of
Unsymmetrical Multisubstituted 2-Hydroxypyrimidinesa

aReaction conditions: 5 (0.2 mmol), CPA 3f (5.0 mol %), DHPD
(1.2 equiv), benzene (4.0 mL), 48 h, 40 °C. DHPD, dihydrophenan-
thridine.

Scheme 4. Gram Scale Experiment and Synthesis of Chiral
3,4-Dihydropyrimidin-2(1H)-thione
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raphy using hexanes and ethyl acetate as the eluent to give the desired
products.
Ethyl 4,6-Bis(4-chlorophenyl)-2-hydroxypyrimidine-5-carboxy-

late (1b). 0.553 g, 36% yield (two steps), new compound, white
solid; mp 95−96 °C; Rf = 0.45 (10/1 dichloromethane/methanol);
1H NMR (400 MHz, CDCl3) δ 13.43 (s, 1H), 7.57 (d, J = 8.6 Hz,
4H), 7.45 (d, J = 8.6 Hz, 4H), 3.95 (q, J = 7.1 Hz, 2H), 0.91 (t, J = 7.1
Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 165.9, 157.9, 137.8,
129.6, 129.1, 111.9, 62.1, 13.4.; HRMS (ESI) m/z calcd for
C19H15Cl2N2O3 [M + H]+ 389.0454, found 389.0459.
Ethyl 4,6-Bis(3-chlorophenyl)-2-hydroxypyrimidine-5-carboxy-

late (1c). 2.942 g, 52% yield (two steps), new compound, white
solid; mp 160−161 °C; Rf = 0.30 (1/1 hexanes/ethyl acetate); 1H
NMR (400 MHz, CDCl3) δ 7.61 (s, 2H), 7.58−7.48 (m, 4H), 7.44−
7.42 (m, 2H), 4.01 (q, J = 7.1 Hz, 2H), 0.97 (t, J = 7.1 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 165.5, 157.6, 135.6, 134.8,
131.4, 130.2, 128.3, 126.3, 112.2, 62.2, 13.5; HRMS (ESI) m/z calcd
for C19H15Cl2N2O3 [M + H]+ 389.0454, found 389.0452.
Ethyl 4,6-Bis(3-fluorophenyl)-2-hydroxypyrimidine-5-carboxy-

late (1d). 2.549 g, 52% yield (two steps), new compound, white
solid; mp 184−185 °C; Rf = 0.30 (1/1 hexanes/ethyl acetate); 1H
NMR (400 MHz, CDCl3) δ 7.37−7.22 (m, 8H), 3.99 (q, J = 7.1 Hz,
2H), 0.93 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
165.6, 162.5 (d, JC−F = 248.4 Hz), 157.7, 136.0, 130.6 (d, JC−F = 8.1
Hz), 123.9 (d, JC−F = 3.1 Hz), 118.4 (d, JC−F = 21.1 Hz), 115.5, 115.3,
112.1, 62.1, 13.4; 19F NMR (376 MHz, CDCl3) δ −111.16; HRMS
calcd for C19H15F2N2O3 [M + H]+ 357.1045, found 357.1049.
Ethyl 2-Hydroxy-4,6-di-m-tolylpyrimidine-5-carboxylate (1e).

1.104 g, 55% yield (two steps), new compound, white solid; mp
190−191 °C; Rf = 0.51 (20/1 dichloromethane/methanol); 1H NMR
(400 MHz, CDCl3) δ 13.04 (s, 1H), 7.42−7.29 (m, 8H), 3.93 (q, J =
6.7 Hz, 2H), 2.38 (s, 6H), 0.88 (t, J = 6.9 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 165.9, 157.2, 137.9, 131.4, 128.2, 128.1, 124.6,
111.4, 61.2, 20.9, 12.9; HRMS (ESI) m/z calcd for C21H21N2O3 [M +
H]+ 349.1547, found 349.1553.
Methyl 2-Hydroxy-4,6-diphenylpyrimidine-5-carboxylate (1g).

0.969 g, 57% yield (two steps), new compound, white solid; mp
215−216 °C; Rf = 0.35 (20/1 dichloromethane/methanol); 1H NMR
(400 MHz, CDCl3) δ 13.14 (s, 1H), 7.63−7.61 (m, 4H), 7.52−7.48
(m, 6H), 3.46 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 166.9,
157.9, 131.3, 128.8, 128.7, 128.1, 128.0, 111.6, 52.5; HRMS (ESI) m/
z calcd for C18H15N2O3 [M + H]+ 307.1077, found 307.1075.
Methyl 2-Hydroxy-4,6-bis(3-methoxyphenyl)pyrimidine-5-car-

boxylate (1h). 2.356 g, 42% yield (two steps), new compound,
white solid; mp 168−169 °C; Rf = 0.30 (1/1 hexanes/ethyl acetate);
1H NMR (400 MHz, CDCl3) δ 7.39−7.35 (m, 2H), 7.19−7.16 (m,

4H), 7.07−7.04 (m, 2H), 3.86 (s, 6H), 3.50 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 166.9, 159.7, 157.7, 135.3, 129.9, 120.2, 117.7,
113.0, 111.7, 55.5, 52.6; HRMS (ESI) m/z calcd for C20H19N2O5 [M
+ H]+ 367.1288, found 367.1290.

Methyl 2-Hydroxy-4,6-di-m-tolylpyrimidine-5-carboxylate (1i).
2.195 g, 40% yield (two steps), new compound, white solid; mp
252−253 °C; Rf = 0.30 (1/1 hexanes/ethyl acetate); 1H NMR (400
MHz, DMSO) δ 12.53 (s, 1H), 7.39−7.30 (m, 8H), 3.39 (s, 3H),
2.37 (s, 6H); 13C{1H} NMR (100 MHz, DMSO) δ 167.6, 138.3,
131.7, 128.9, 128.8, 125.3, 100.0, 52.7, 21.4; HRMS (ESI) m/z calcd
for C20H19N2O3 [M + H]+ 335.1390, found 335.1392.

tert-Butyl 2-Hydroxy-4,6-diphenylpyrimidine-5-carboxylate (1j).
1.697 g, 67% yield (two steps), new compound, white solid; mp 209−
210 °C; Rf = 0.45 (ethyl acetate); 1H NMR (400 MHz, CDCl3) δ
7.65−7.63 (m, 4H), 7.52−7.47 (m, 6H), 1.15 (s, 9H); 13C{1H} NMR
(100 MHz, CDCl3) δ 164.9, 157.7, 130.9, 128.6, 128.2, 83.0, 27.3;
HRMS (ESI) m/z calcd for C21H21N2O3 [M + H]+ 349.1547, found
349.1548.

N,N-Diethyl-2-hydroxy-4,6-diphenylpyrimidine-5-carboxamide
(1k). 1.358 g, 56% yield (two steps), new compound, white solid; mp
225−226 °C; Rf = 0.25 (ethyl acetate); 1H NMR (400 MHz, CDCl3)
δ 7.80−7.78 (m, 4H), 7.49−7.43 (m, 6H), 3.19−3.18 (m, 2H), 2.85−
2.83 (m, 2H), 0.79 (t, J = 7.1 Hz, 3H), 0.49 (t, J = 7.1 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 164.9, 157.8, 130.7, 128.4,
128.1, 113.5, 42.4, 38.3, 12.4, 10.9; HRMS (ESI) m/z calcd for
C21H22N3O2 [M + H]+ 348.1707, found 348.1710.

General Procedure for Hydrogenation of 2-Hydroxypyr-
imidines. A mixture of 2-hydroxypyrimidines 1 (0.20 mmol),
Hantzsch ester 4a (61 mg, 0.24 mmol, 1.2 equiv), and chiral
phosphoric acid (R)-3f (7.5 mg, 0.01 mmol, 5 mol %) in toluene (4
mL) was stirred at 40 °C under nitrogen for 24 h in an oil bath. After
the reaction had reached completion (determined by TLC), the
solvent was removed under reduced pressure. The residue was
purified by flash chromatography on silica gel using a dichloro-
methane/methanol eluent to give the desired product 2. The
enantiomeric excesses were determined by chiral HPLC.

Ethyl (R)-(+)-2-Oxo-4,6-diphenyl-1,2,3,4-tetrahydropyrimidine-
5-carboxylate (2a). 63 mg, 98% yield, known compound,15 white
solid; Rf = 0.45 (20/1 dichloromethane/methanol); 94% ee; [α]20D =
+27.43 (c 0.74, MeOH) [lit.15 [α]20D = −31.1 (c 0.44, MeOH) for
97% ee (S)]; 1H NMR (400 MHz, CDCl3) δ 7.43−7.25 (m, 10H),
7.09 (s, 1H), 5.98 (s, 1H), 5.48 (s, 1H), 3.84−3.80 (m, 2H), 0.80 (t, J
= 7.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 165.5, 153.7,
147.6, 143.7, 134.8, 129.4, 128.8, 128.3, 128.0, 127.9, 126.6, 102.0,
60.0, 55.3, 13.6; HPLC Chiracel AD-H column, 254 nm, 30 °C, 80/

Scheme 5. Proposed Reaction Pathway and Transition State
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20 hexane/isopropanol, flow rate of 0.7 mL/min, retention times of
13.8 min (major) and 17.3 min.
Ethyl (R)-4,6-Bis(4-chlorophenyl)-2-oxo-1,2,3,4-tetrahydropyri-

midine-5-carboxylate (2b). 77 mg, 99% yield, new compound,
white solid; mp 190−191 °C; Rf = 0.45 (30/1 dichloromethane/
methanol); 83% ee; [α]20D = +26.02 (c 0.88, MeOH); 1H NMR (400
MHz, CDCl3) δ 7.90 (s, 1H), 7.36−7.24 (m, 8H), 6.50 (s, 1H), 5.37
(d, J = 3.0 Hz, 1H), 3.88−3.83 (m, 2H), 0.87 (t, J = 7.1 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 164.9, 153.1, 146.2, 141.8,
135.8, 134.0, 133.1, 129.6, 129.1, 128.5, 127.9, 102.4, 60.3, 55.1, 13.6;
HPLC Chiracel AD-H column, 254 nm, 30 °C, 80/20 hexane/
isopropanol, flow rate of 0.7 mL/min, retention times of 13.2 min
(major) and 15.7 min; HRMS (ESI) m/z calcd for C19H17Cl2N2O3
[M + H]+ 391.0611, found 391.0606.
Ethyl (R)-4,6-Bis(3-chlorophenyl)-2-oxo-1,2,3,4-tetrahydropyri-

midine-5-carboxylate (2c). 76 mg, 97% yield, new compound,
white solid; mp 208−209 °C; Rf = 0.60 (1/1 hexanes/ethyl acetate);
92% ee; [α]20D = +8.15 (c 0.54, MeOH); 1H NMR (400 MHz,
CDCl3) δ 7.59 (s, 1H), 7.42−7.21 (m, 9H), 6.20 (s, 1H), 5.47 (s,
1H), 3.91−3.86 (m, 2H), 0.89 (t, J = 7.1 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 164.1, 152.1, 145.3, 144.6, 135.8, 134.2, 133.6,
129.7, 129.2, 129.1, 128.0, 127.9, 126.4, 125.7, 124.2, 102.0, 59.8,
54.9, 13.0; HPLC Chiracel AD-H column, 254 nm, 30 °C, 80/20
hexane/isopropanol, flow rate of 0.7 mL/min, retention times of 14.3
min (major) and 16.2 min; HRMS (ESI) m/z calcd for
C19H17Cl2N2O3 [M + H]+ 391.0611, found 391.0615.
Ethyl (R)-4,6-Bis(3-fluorophenyl)-2-oxo-1,2,3,4-tetrahydropyrimi-

dine-5-carboxylate (2d). 70 mg, 97% yield, new compound, white
solid; mp 184−185 °C; Rf = 0.60 (1/1 hexanes/ethyl acetate); 91%
ee; [α]20D = −3.87 (c 0.80, MeOH); 1H NMR (400 MHz, CDCl3) δ
8.19 (s, 1H), 7.35−7.02 (m, 8H), 6.79 (s, 1H), 5.40 (d, J = 3.2 Hz,
1H), 3.92−3.86 (m, 2H), 0.88 (t, J = 7.1 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 164.9, 163.0 (d, JC−F = 246.8 Hz), 162.2 (d,
JC−F = 247.1 Hz), 153.3, 146.2 (d, JC−F = 2.0 Hz), 145.8 (d, JC−F = 6.1
Hz), 136.5 (d, JC−F = 8.1 Hz), 130.4 (d, JC−F = 8.1 Hz), 129.8 (d, JC−F
= 8.2 Hz), 124.0 (d, JC−F = 3.0 Hz), 122.1 (d, JC−F = 2.8 Hz), 116.5
(d, JC−F = 21.0 Hz), 115.6 (d, JC−F = 22.9 Hz), 115.1 (d, JC−F = 21.2
Hz), 113.5 (d, JC−F = 22.0 Hz), 102.2, 60.3, 54.9, 13.5; 19F NMR (376
MHz, CDCl3) δ −112.01, −112.49; HPLC Chiracel AD-H column,
254 nm, 30 °C, 85/15 hexane/isopropanol, flow rate of 0.9 mL/min,
retention times of 13.3 min (major) and 15.0 min; HRMS (ESI) m/z
calcd for C19H17F2N2O3 [M + H]+ 359.1202, found 359.1204.
Ethyl (R)-2-Oxo-4,6-di-m-tolyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (2e). 68 mg, 97% yield, new compound, white solid;
mp 196−197 °C; Rf = 0.35 (30/1 dichloromethane/methanol); 94%
ee; [α]20D = +25.18 (c 0.81, MeOH); 1H NMR (400 MHz, CDCl3) δ
7.42 (s, 1H), 7.24−7.09 (m, 8H), 6.27 (s, 1H), 5.39 (d, J = 2.7 Hz,
1H), 3.86−3.81 (m, 2H), 2.33 (d, J = 4.8 Hz, 6H), 0.83 (t, J = 7.1 Hz,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 165.4, 153.0, 147.1, 143.5,
138.4, 137.8, 135.0, 130.2, 128.8, 128.7, 128.6, 128.1, 127.4, 125.2,
123.7, 102.2, 59.9, 55.8, 21.6, 21.3, 13.6; HPLC Chiracel AD-H
column, 254 nm, 30 °C, 80/20 hexane/isopropanol, flow rate of 0.8
mL/min, retention times of 10.1 min (major) and 12.9 min; HRMS
(ESI) m/z calcd for C21H23N2O3 [M + H]+ 351.1703, found
351.1700.
Ethyl (R)-4,6-Bis(3-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydropyr-

imidine-5-carboxylate (2f). 75 mg, 99% yield, known compound,15

white solid; Rf = 0.45 (20/1 dichloromethane/methanol); 97% ee;
[α]20D = +23.78 (c 0.74, MeOH) [lit.15 [α]20D = −22.4 (c 0.58,
MeOH) for 99% ee (S)]; 1H NMR (400 MHz, CDCl3) δ 7.69 (s,
1H), 7.27−7.22 (m, 2H), 6.99−6.98 (m, 2H), 6.96−6.80 (m, 4H),
6.50 (s, 1H), 5.37 (d, J = 2.4 Hz, 1H), 3.87−3.82 (m, 2H), 3.76 (d, J
= 6.7 Hz, 6H), 0.85 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 165.3, 159.9, 159.3, 153.1, 147.0, 145.0, 136.1, 129.9, 129.2,
120.6, 118.8, 115.3, 113.5, 113.2, 112.5, 102.0, 60.0, 55.6, 55.3, 55.2,
13.6; HPLC Chiracel AD-H column, 254 nm, 30 °C, 70/30 hexane/
isopropanol, flow rate of 0.8 mL/min, retention times of 14.8 min
(major) and 16.4 min.
Methyl (R)-2-Oxo-4,6-diphenyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (2g). 61 mg, 98% yield, new compound, white solid;

mp 211−212 °C; Rf = 0.45 (30/1 dichloromethane/methanol); 92%
ee; [α]20D = +10.33 (c 1.22, MeOH); 1H NMR (400 MHz, CDCl3) δ
7.44−7.31 (m, 10H), 7.02 (brs, 1H), 5.90 (brs, 1H), 5.52 (s, 1H),
3.41 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 165.2, 152.6,
147.0, 142.9, 134.3, 129.1, 128.4, 127.7, 127.5, 126.1, 126.0, 101.4,
55.1, 50.6; HPLC Chiracel IA column, 254 nm, 30 °C, 80/20 hexane/
isopropanol, flow rate of 0.8 mL/min, retention times of 11.1 min
(major) and 14.5 min; HRMS (ESI) m/z calcd for C18H17N2O3 [M +
H]+ 309.1234, found 309.1237.

Methyl (R)-4,6-Bis(3-methoxyphenyl)-2-oxo-1,2,3,4-tetrahydro-
pyrimidine-5-carboxylate (2h). 72 mg, 97% yield, new compound,
white solid; mp 209−210 °C; Rf = 0.60 (30/1 dichloromethane/
methanol); >99% ee; [α]20D = +26.61 (c 1.30, MeOH); 1H NMR
(400 MHz, DMSO) δ 9.28 (s, 1H), 7.86 (s, 1H), 7.30 (t, J = 7.8 Hz,
2H), 6.99−6.86 (m, 6H), 5.22 (d, J = 3.2 Hz, 1H), 3.76 (d, J = 9.8
Hz, 6H), 3.30 (s, 3H); 13C{1H} NMR (100 MHz, DMSO) δ 165.9,
159.8, 159.1, 152.6, 149.4, 146.2, 136.5, 130.2, 129.4, 121.3, 118.8,
115.3, 114.1, 112.9, 112.8, 100.3, 55.6, 55.5, 54.4, 51.2; HPLC
Chiracel AD-H column, 254 nm, 30 °C, 70/30 hexane/isopropanol,
flow rate of 0.8 mL/min, retention times of 14.0 min (major) and
17.0 min; HRMS (ESI) m/z calcd for C20H21N2O5 [M + H]+

369.1445, found 369.1443.
Methyl (R)-2-Oxo-4,6-di-m-tolyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (2i). 65 mg, 97% yield, new compound, white solid; mp
227−228 °C; Rf = 0.60 (30/1 dichloromethane/methanol); 91% ee;
[α]20D = +24.68 (c 0.62, MeOH); 1H NMR (400 MHz, CDCl3) δ
7.30−7.09 (m, 10H), 6.15 (s, 1H), 5.40 (d, J = 2.9 Hz, 1H), 3.39 (s,
3H), 2.35 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 165.2, 152.3,
146.9, 142.8, 138.0, 137.5, 134.3, 129.9, 128.4, 128.2, 127.9, 127.6,
126.7, 124.7, 123.1, 101.3, 55.3, 50.6, 21.1, 20.8; HPLC Chiracel AD-
H column, 254 nm, 30 °C, 80/20 hexane/isopropanol, flow rate of 0.7
mL/min, retention times of 11.5 min (major) and 15.8 min; HRMS
(ESI) m/z calcd for C20H21N2O3 [M + H]+ 337.1547, found
337.1551.

tert-Butyl (R)-2-Oxo-4,6-diphenyl-1,2,3,4-tetrahydropyrimidine-
5-carboxylate (2j). 68 mg, 97% yield, new compound, white solid;
mp 166−167 °C; Rf = 0.50 (4/1 dichloromethane/ethyl acetate);
94% ee; [α]20D = +32.50 (c 0.68, MeOH); 1H NMR (400 MHz,
CDCl3) δ 7.43−7.21 (m, 11H), 6.10 (s, 1H), 5.42 (s, 1H), 1.04 (s,
9H); 13C{1H} NMR (100 MHz, CDCl3) δ 164.7, 153.0, 145.6, 143.4,
135.5, 129.3, 128.8, 128.2, 128.1, 127.9, 126.6, 104.0, 80.4, 56.1, 27.6;
HPLC Chiracel AD-H column, 254 nm, 30 °C, 80/20 hexane/
isopropanol, flow rate of 0.7 mL/min, retention times of 9.6 min
(major) and 11.6 min; HRMS (ESI) m/z calcd for C20H23N2O3 [M +
H]+ 351.1703, found 351.1704.

(R)-N,N-Diethyl-2-oxo-4,6-diphenyl-1,2,3,4-tetrahydropyrimi-
dine-5-carboxamide (2k). 68 mg, 97% yield, new compound, white
solid; mp 266−267 °C; Rf = 0.35 (ethyl acetate); 95% ee; [α]20D =
−46.23 (c 1.22, MeOH); 1H NMR (400 MHz, CDCl3) δ 7.38−7.21
(m, 12H), 5.74 (s, 1H), 5.62 (s, 1H), 3.90−2.94 (m, 2H), 2.37 (d, J =
55.5 Hz, 2H), 0.69 (t, J = 6.9 Hz, 3H), −0.07 (s, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 167.3, 154.0, 141.9, 133.5, 131.5, 129.6, 128.7,
128.5, 128.1, 127.5, 126.8, 106.5, 59.0, 41.6, 37.5, 11.9, 11.5; HPLC
Chiracel AD-H column, 254 nm, 30 °C, 80/20 hexane/isopropanol,
flow rate of 0.8 mL/min, retention times of 13.9 and 16.1 min
(major); HRMS (ESI) m/z calcd for C21H24N3O2 [M + H]+

350.1863, found 350.1859.
Ethyl (R)-4,6-Dimethyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (2l). 39 mg, 97% yield, known compound,18 white
solid; Rf = 0.45 (ethyl acetate); 36% ee; [α]20D = −54.51 (c 0.62,
MeOH); 1H NMR (400 MHz, DMSO) δ 4.13−4.06 (m, 3H), 2.16
(s, 3H), 1.19 (t, J = 7.1 Hz, 3H), 1.10 (d, J = 6.2 Hz, 3H); 13C{1H}
NMR (100 MHz, DMSO) δ 165.8, 152.9, 148.1, 100.9, 59.5, 46.7,
23.8, 18.1, 14.7; HPLC Chiracel AD-H column, 254 nm, 30 °C, 80/
20 hexane/isopropanol, flow rate of 0.7 mL/min, retention times of
7.8 min (major) and 8.6 min.

General Procedure for Hydrogenation of Pyrimidin-2-ols 5.
A mixture of 2-hydroxypyrimidine 1 (0.20 mmol), dihydrophenan-
thridine (DHPD) 4d (36 mg, 0.20 mmol, 1 equiv), and chiral
phosphoric acid (R)-3f (7.5 mg, 0.01 mmol, 5 mol %) in benzene (4
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mL) was stirred at 40 °C under nitrogen for 24 h. The mixture was
then cooled to room temperature, and DHPD 4d (36 mg, 0.20 mmol,
1 equiv) was added again under the nitrogen atmosphere. The
reaction mixture was placed in an oil bath at 40 °C under nitrogen for
an additional 24 h. After the reaction had reached completion
(determined by TLC), the solvent was removed under reduced
pressure. The residue was purified by flash chromatography on silica
gel to yield the desired product. The enantiomeric excesses were
determined by chiral HPLC. Racemates of 6 were prepared by the
reduction of 5 using the racemic catalyst.
Ethyl 4-Methyl-2-oxo-6-phenyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (6a). 47 mg, 90% yield, known compound,18white
solid; Rf = 0.40 (1/2 hexanes/ethyl acetate); 77% ee; [α]20D =
+102.90 (c 0.62, MeOH); 1H NMR (400 MHz, CDCl3) δ 7.43−7.28
(m, 5H), 6.67 (s, 1H), 5.55 (s, 1H), 4.56−4.55 (m, 1H), 3.95 (q, J =
7.1 Hz, 2H), 1.45 (d, J = 6.3 Hz, 3H), 0.93 (t, J = 7.1 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 165.4, 153.3, 146.7, 135.3,
129.5, 128.3, 127.9, 103.7, 60.0, 48.2, 23.6, 13.6; HPLC Chiracel OD-
H column, 254 nm, 30 °C, 90/10 hexane/isopropanol, flow rate of 0.7
mL/min, retention times of 13.5 and 14.8 min (major).
Ethyl 6-(3-Chlorophenyl)-4-methyl-2-oxo-1,2,3,4-tetrahydropyr-

imidine-5-carboxylate (6b). 54 mg, 92% yield, new compound, white
solid; mp 205−206 °C; Rf = 0.40 (1/2 hexanes/ethyl acetate); 76%
ee; [α]20D = +84.55 (c 0.68, MeOH); 1H NMR (400 MHz, CDCl3) δ
7.42−7.12 (m, 5H), 5.92 (s, 1H), 4.42−4.40 (m, 1H), 3.92−3.85 (m,
2H), 1.33 (d, J = 6.4 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 164.6, 153.5, 144.9, 136.1, 133.3, 128.9,
128.1, 125.9, 103.5, 59.6, 47.4, 23.0, 13.1; HPLC Chiracel OD-3
column, 254 nm, 30 °C, 90/10 hexane/isopropanol, flow rate of 0.9
mL/min, retention times of 9.6 and 10.6 min (major); HRMS (ESI)
m/z calcd for C14H16ClN2O3 [M + H]+ 295.0844, found 295.0848.
Ethyl 6-(3-Bromophenyl)-4-methyl-2-oxo-1,2,3,4-tetrahydropyr-

imidine-5-carboxylate (6c). 61 mg, 90% yield, new compound, white
solid; mp 199−200 °C; Rf = 0.35 (1/2 hexanes/ethyl acetate); 78%
ee; [α]20D = +73.93 (c 1.22, MeOH); 1H NMR (400 MHz, CDCl3) δ
7.83 (s, 1H), 7.54−7.52 (m, 1H), 7.45 (s, 1H), 7.28−7.25 (m, 2H),
6.23 (s, 1H), 4.45 (d, J = 5.3 Hz, 1H), 3.99−3.91 (m, 2H), 1.41 (d, J
= 6.3 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 164.6, 153.3, 144.7, 136.3, 131.8, 130.9, 129.1, 126.3, 121.4,
103.6, 59.6, 47.4, 23.1, 13.2; HPLC Chiracel OD-3 column, 254 nm,
30 °C, 90/10 hexane/isopropanol, flow rate of 0.9 mL/min, retention
times of 10.1 and 10.8 min (major); HRMS (ESI) m/z calcd for
C14H16BrN2O3 [M + H]+ 339.0339, found 339.0342.
Ethyl 6-(3-Methoxyphenyl)-4-methyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (6d). 52 mg, 90% yield, new compound,
white solid; mp 232−233 °C; Rf = 0.40 (1/2 hexanes/ethyl acetate);
75% ee; [α]20D = +102.71 (c 0.70, MeOH); 1H NMR (400 MHz,
CDCl3) δ 7.60 (s, 1H), 7.29−7.25 (m, 1H), 6.94−6.83 (m, 3H), 6.41
(s, 1H), 4.44−4.41 (m, 1H), 3.97−3.91 (m, 2H), 3.80 (s, 3H), 1.41
(d, J = 6.3 Hz, 3H), 0.95 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 165.5, 159.3, 153.9, 146.6, 136.3, 129.2, 120.5, 115.2,
113.4, 103.5, 59.9, 55.3, 47.9, 23.5, 13.7; HPLC Chiracel AD-H
column, 254 nm, 30 °C, 90/10 hexane/isopropanol, flow rate of 0.7
mL/min, retention times of 22.2 and 24.6 min (major); HRMS (ESI)
m/z calcd for C15H19N2O4 [M + H]+ 291.1339, found 291.1341.
Ethyl 6-(4-Methoxyphenyl)-4-methyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (6e). 53 mg, 91% yield, new compound,
white solid; mp 214−215 °C; Rf = 0.40 (1/2 hexanes/ethyl acetate);
79% ee; [α]20D = +81.92 (c 0.78, MeOH); 1H NMR (400 MHz,
CDCl3) δ 7.60 (brs, 1H), 7.28−7.25 (m, 2H), 6.91−6.89 (m, 2H),
6.18 (brs, 1H), 4.45 (s, 1H), 4.00−3.96 (m, 2H), 3.80 (s, 3H), 1.39
(d, J = 6.3 Hz, 3H), 0.94 (t, J = 7.1 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 165.6, 160.6, 153.8, 146.8, 129.6, 127.1, 113.5, 103.0,
59.9, 55.3, 48.0, 23.5, 13.9; HPLC Chiracel OD-3 column, 254 nm, 30
°C, 90/10 hexane/isopropanol, flow rate of 0.9 mL/min, retention
times of 14.7 and 17.0 min (major); HRMS (ESI) m/z calcd for
C15H19N2O4 [M + H]+ 291.1339, found 291.1334.
Ethyl 4-Methyl-2-oxo-6-(m-tolyl)-1,2,3,4-tetrahydropyrimidine-

5-carboxylate (6f). 52 mg, 95% yield, new compound, white solid;
mp 240−241 °C; Rf = 0.40 (1/2 hexanes/ethyl acetate); 75% ee;

[α]20D = +90.22 (c 0.90, MeOH); 1H NMR (400 MHz, CDCl3) δ
7.20−7.01 (m, 5H), 6.03 (brs, 1H), 4.40 (s, 1H), 3.89−3.83 (m, 2H),
2.28 (s, 3H), 1.33 (d, J = 4.8 Hz, 3H), 0.84 (t, J = 7.1 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 165.5, 153.5, 147.0, 137.9,
135.1, 130.2, 128.6, 128.1, 125.1, 103.4, 59.9, 48.0, 23.6, 21.3, 13.7;
HPLC Chiracel OD-3 column, 254 nm, 30 °C, 90/10 hexane/
isopropanol, flow rate of 0.9 mL/min, retention times of 9.8 and 11.0
min (major); HRMS (ESI) m/z calcd for C15H19N2O4 [M + H]+

275.1390, found 275.1387.
Hydrogenation of Pyrimidin-2-ols at Gram Scale. A mixture

of pyrimidin-2-ols 1a (1.282 g, 4.0 mmol), Hantzsch ester 4a (1.216
g, 4.8 mmol, 1.2 equiv), and chiral phosphoric acid (R)-3f (151 mg,
0.2 mmol, 5 mol %) in toluene (40 mL) was stirred at 40 °C under
nitrogen for 24 h. After the reaction had reached completion
(determined by TLC), the resulting mixture was concentrated in
vacuo and further purification was performed by a silica gel column
eluted with the ethyl acetate/methanol eluent to give the hydro-
genation product (R)-(+)-2a (1.268 g, 98% yield, 94% ee).

Synthesis of the Chiral Cyclic Thiourea. According to a known
report,19 to a solution of cyclic urea (R)-(+)-2a (>99% ee after
recrystallization, 65 mg, 0.20 mmol) in anhydrous toluene (4.0 mL)
was added Lawesson’s reagent (97 mg, 0.24 mmol) under a nitrogen
atmosphere. The resulting solution was refluxed overnight. Toluene
was removed in vacuo, and the residue was diluted with water. The
aqueous mixture was extracted with dichloromethane (3 × 15 mL).
The combined organic layer was washed twice with brine, dried over
anhydrous sodium sulfate, and concentrated under reduced pressure
to give a viscous oil. The crude product was purified by flash column
chromatography using a dichloromethane/methanol eluent to give the
chiral thiourea (65 mg).

Ethyl (R)-4,6-Diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-
carboxylate (8a). 65 mg, 96% yield, known compound,20 white solid;
>99% ee; [α]20D = −7.98 (c 0.94, MeOH); Rf = 0.40 (1/2 hexanes/
ethyl acetate); 1H NMR (400 MHz, CDCl3) δ 7.82 (brs, 1H), 7.45−
7.33 (m, 10H), 5.58 (s, 1H), 3.94−3.84 (m, 2H), 0.86−0.83 (m, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 174.5, 164.8, 143.9, 142.1,
134.0, 129.9, 129.0, 128.5, 128.4, 128.1, 126.9, 103.7, 60.4, 56.4, 13.5;
HPLC Chiracel AD-H column, 254 nm, 30 °C, 90/10 hexane/
isopropanol, flow rate of 0.9 mL/min, retention times of 16.6 min
(major) and 18.3 min.
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