Literature Report 4

Multimetallic Catalysed Cross-Coupling of Aryl Halide with Aryl Triflates

Reporter: Han Wang Checker: Bo Wu Date: 2019.11.25

Weix, D. J.* *et al. Nature* **2015**, *524*, 454-457. Weix, D. J.* *et al. J. Am. Chem. Soc.* **2019**, *141*, 10978-10983.

CV of Dr. Daniel J. Weix

Background:

- **1996-2000** B.S., Columbia University
- **2000-2005** Ph.D., University of California, Berkeley
- **2005-2006** Postdoctor, Yale University (Prof John Hartwig)
- **2006-2008** Postdoctor, University of Illinois at Urbana-Champaign
- 2008-2014 Assistant Professor, University of Rochester
- **2014-now** Associate Professor, University of Wisconsin-Madison

Research:

Development of conceptually new catalytic methods for organic synthesis.

1 Introduction

2 Cross-Coupling of Aryl Bromides with Aryl Triflates

3 Cross-Coupling of Aryl Chlorides with Aryl Triflates

Introduction

Introduction

Decarboxylative Cross-Coupling

Decarboxylative Cross-Coupling

Goossen, L. J. et al. J. Am. Chem. Soc. 2008, 130, 15248.

Goossen, L. J. et al. Angew. Chem. Int. Ed. 2015, 54, 13130.

Decarboxylative Cross-Coupling

Oxidative Decarboxylative Cross-Coupling

Liu, L. et al. Chem. Commun. 2011, 47, 677.

Daugulis, O. et al. J. Am. Chem. Soc. 2007, 129, 9879.

Daugulis, O. et al. J. Am. Chem. Soc. 2007, 129, 9879.

Ullmann Coupling

Cross-Coupling of Ar-Br with Ar-OTf

Conditions for Cross-Coupling

Reactivity of Catalysts

Selectivites of Ni and Pd Catalysts

Conditions for Cross-Coupling

^a Conditions:1 (0.5 mmol), 2 (0.5 mmol), DMF (2 mL), 24 h.

^b One equivalent of KF was added.

20

Entry ^a	Ligand	3 (%)	MeO OMe
1	L8	61	
2 ^b	L9	47	L8 L9
3	L10	59	
4 ^b	L11	53	
5	L12	54	L10 L11

^a Conditions:**1** (0.5 mmol), **2** (0.5 mmol), DMF (2 mL), 24 h. ^b Reactions were monitored for 64 h.

21

L12

Substrate Scope

Substrate Scope

LiCI-Accelerated Ullmann Cross-Coupling

Weix, D. J. et al. J. Am. Chem. Soc. 2019, 141, 10978.

Mechanistic Study

^a Reactions were run on a 0.5 mmol scale in 2 mL of solvent. Yields are expressed as corrected GC yields vs. dodecane as an internal standard.

PCy₂

^a Reactions were run on a 0.5 mmol scale in 2 mL of solvent. Yields are expressed as corrected GC yields vs. dodecane as an internal standard.

OMe

Entry	Change from the optimized conditions ^a	3a (%) ^{<i>b</i>}
1	none	84
2	NaCl instead of LiCl	62
3	LiBr instead of LiCl	59
4	TMSCI instead of LiCI	16
5	no LiCl	<10
6	Mn instead of Zn	62
7	Mn instead of Zn, LiBr instead of LiCl	77
8	Reaction set up on the benchtop ^c	80
9	1.2 equiv of 2a	90 (89) ^d

^a Reactions were run on a 0.5 mmol scale in 2 mL of solvent. ^bGC yield vs dodecane as an internal standard. ^cThe reaction was set up under air with dry solvent. ^dIsolated yield.

Substrate Scope

Substrate Scope

Summary

Ullman Cross-Coupling of Ar-Br with Ar-OTf

Weix, D. J. et al. Nature 2015, 524, 454.

Ullman Cross-Coupling of Ar-Cl with Ar-OTf

Weix, D. J. et al. J. Am. Chem. Soc. 2019, 141, 10978.

The First Paragraph

The synthesis of biaryls has become one of the most commonly used reactions in pharmaceutical, agrochemical, and materials science industries, yet access to arylmetal reagents remains limiting. The low commercial availability of arylmetal reagents has inspired a number of active areas of research, including improved methods for arylmetal synthesis, C-H arylation, and decarboxylative cross-coupling. The relative abundance of aryl electrophile would make the cross-Ullman reaction an attractive approach, but our recently reported catalytic nickel and palladium method was not broadly effective with the most abundant and versatile aryl electrophiles, aryl chlorides.

In addition to opening up more chemical space, aryl chlorides are often lower in cost, and their lower reactivity would allow for sequential coupling in fragment-based drug discovery or late-stage coupling on complex molecules

This report shows how the nickel and palladium system can be rationally modulated to couple less reactive substrates: an unselective multimetallic reaction was made selective with the use of an additive, LiCl, that facilitates the reduction of the nickel catalyst at the zinc surface. Combined with our previous reports, these results suggest that the Ni/Pd system is general and that multimetallic catalysis may have broad generality. Finally, this work demonstrates how reactivity in crosselectrophile coupling reactions can be influenced by the reductant choice as much as the ligand choice: salts formed in the reaction may be autoinhibitory, and new reductant combinations can unlock new reactivity.

In addition to opening up more chemical space, aryl chlorides are often lower in cost, and their lower reactivity ...

This report shows how the nickel and palladium system can **be rationally modulated to** couple less reactive substrates: an unselective multimetallic reaction was made selective with the use of an additive, LiCl, that facilitates the reduction of the nickel catalyst.

Combined with our previous reports, these results suggest that the Ni/Pd system is general and that multimetallic catalysis may have **broad** generality.

Electron-poor fluorine-containing substrates as well as electron-neutral and electron-rich substrates were well-tolerated, including **sensitive functionalities** such as...

Acknowledgement

