
Literature Report 8

Chiral Bidentate Boryl Ligand Enabled Iridium Catalyzed Asymmetric C(sp²)-H Borylation of Diarylmethylamines

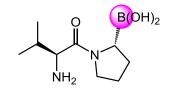
> Reporter : Huan-Ping Xie Checker : Yang Zhao Date : 2019-05-13

Su, B.; Shi, Z.-J.; Hartwig, J. F. *Angew. Chem. Int. Ed.* **2017**, *56*, 7205. Zou, X.; Ke, Z.; Xu, S. *J. Am. Chem. Soc.* **2019**, *141*, 5334.

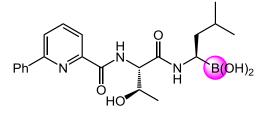
2 Asymmetric C(sp²)-H Borylation (Relay-directed)

3 Asymmetric C(sp²)-H Borylation (Chelate-directed)

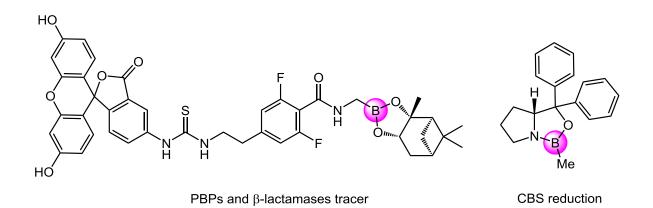
CV of Senmiao Xu


Senmiao Xu

Education:

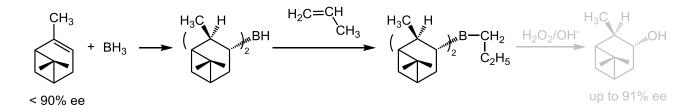

- **2000-2004** B.S., Zhejiang University;
- 2004-2009 Ph.D., SIOC (K. Ding);
- **2009-2010** Postdoc., Kyoto University (K. Maruoka);
- **2010-2013** Postdoc., Oregon University (S.-Y. Liu);
- 2013-2015 Postdoc., Boston College (S.-Y. Liu);
- **2015-now** Prof., Lanzhou Institute of Chemical Physics.

Research:


- Catalytic oxidation and novel atomic economy reaction;
- Design, synthesis and application of new ligands and catalysts.

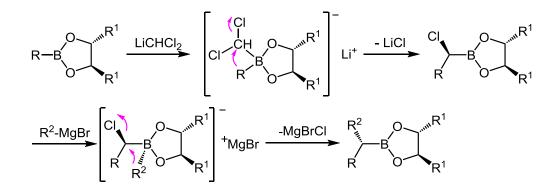
Talabostat DPP4 Inhibitor Phase II lung cancer, melanoma, leukemia

Delanzomib Phase I clinical trials (solid tumours)

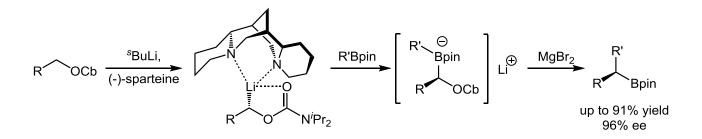


Cativiela, C. et al. Chem. Soc. Rev. 2016, 45, 2291.

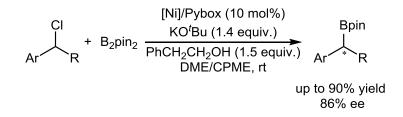
Synthetic routes:


- (I) Brown hydroboration
- (II) Matteson homologation
- (II) Lithiation-borylation
- (IV) Transition-metal-catalyzed coupling reaction
- (V) Carbene insertion into B-H bonds
- (VI) C-C coupling of *gem*-diboron compounds
- (VII) Addition of "Bpin-M" to unsaturated bonds
- (VIII) Addition of "BpinCHR-M" to unsaturated bonds
- (IX) Borylation of C-H bonds

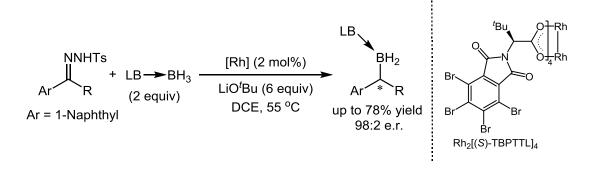
Brown hydroboration


Brown, H. C. et al. J. Am. Chem. Soc. 1961, 83, 486.

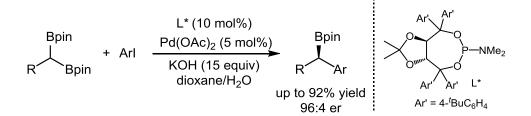
Matteson reaction


Matteson, D. S. et al. Chem. Rev. 1989, 89, 1535.

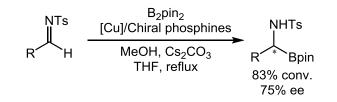
Lithiation-borylation


Aggarwal, V. K. et al. Angew. Chem. Int. Ed. 2007, 46, 7491.

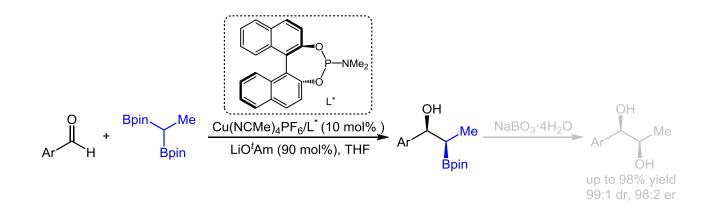
Transition-metal-catalyzed coupling reaction


Fu, G. C. et al. Angew. Chem. Int. Ed. 2018, 57, 14529.

Carbene insertion into B-H bonds

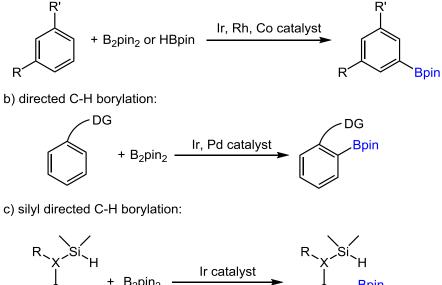

Zhou, Q.-L. et al. J. Am. Chem. Soc. 2018, 140, 10663.

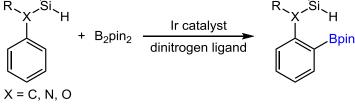
C-C coupling of gem-diboron compounds


Morken, J. P. et al. J. Am. Chem. Soc. 2014, 136, 6534.

Addition of "Bpin-M" to unsaturated bonds

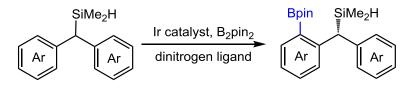
Fernandez, E. et al. Chem. Commun. 2012, 48, 3769.


Addition of "BpinCHR-M" to unsaturated bonds



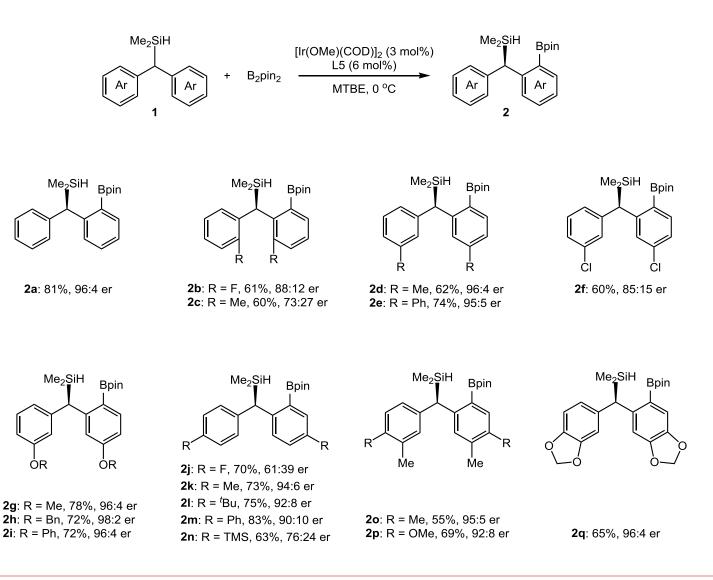
Meek, S. J. et al. J. Am. Chem. Soc. 2015, 137, 6176.

C-H Bonds Borylation Catalyzed by Transition Metals


Previous work: a) undirected C-H borylation:

This work:

d) the first enantioselective Ir-catalyzed C-H borylation

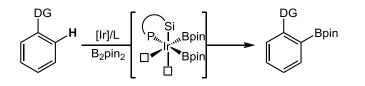

Condition Optimization

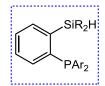
	Me ₂ SiH	+	[Ir(C B ₂ pin ₂ — (1.0 equiv)	DMe)(COD)] ₂ (2 mol9 L* (4 mol%) Solvent, T	%) Me ₂ SiH Bpin	
entry ^a	solvent	T (°C)	L*	yield (%) ^b	er ^c	
1	THF	25	L1	<5		Bn N N Bn
2	THF	25	L2	26	53:47	
3	THF	25	L3	70	62:38	
4	THF	25	L4	54	76:24	L2
5	THF	25	L5	62	85:15	
6	THF	0	L5	66	87:13	L3
7	Hexane	0	L5	58	95:5	
8	Octane	0	L5	62	95:5	
9	MTBE	0	L5	60	96:4	L4
10 ^d	MTBE	0	L5	89	96:4	

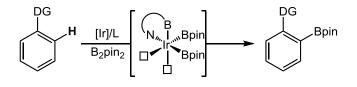

L5

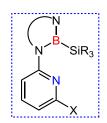
^a Conditions: **1a** (0.1 mmol), [Ir(OMe)(COD)]₂ (2 mol%), L* (4 mol%), B₂pin₂ (0.1 mmol) in solvent (1.0 mL). ^b The yields obtained by ¹H NMR with CH₂Br₂ as internal standard. ^cer values were determined by chiral HPLC. ^d1.2 equiv of B₂pin₂ was used, [Ir(OMe)(COD)]₂ (3 mol%) and L5 (6 mol%) was used.

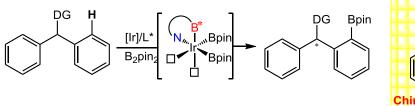
Substrate Scope



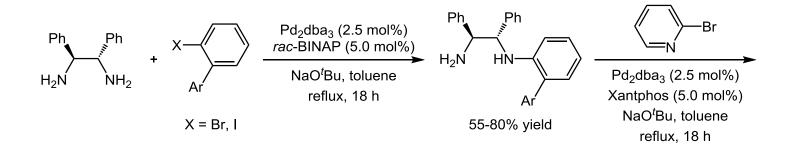

Transformations of Products

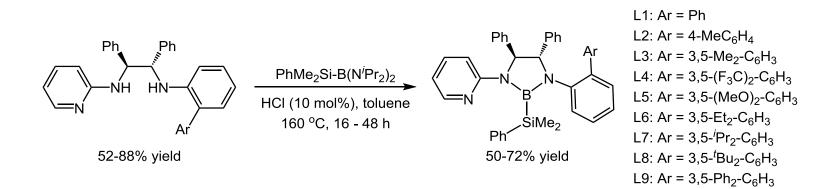

Stoltz, B. M. et al. J. Am. Chem. Soc. 2018, 140, 10109.

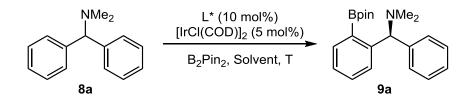

Smith's work: Silyl Phosphorus ligand for ortho borylation



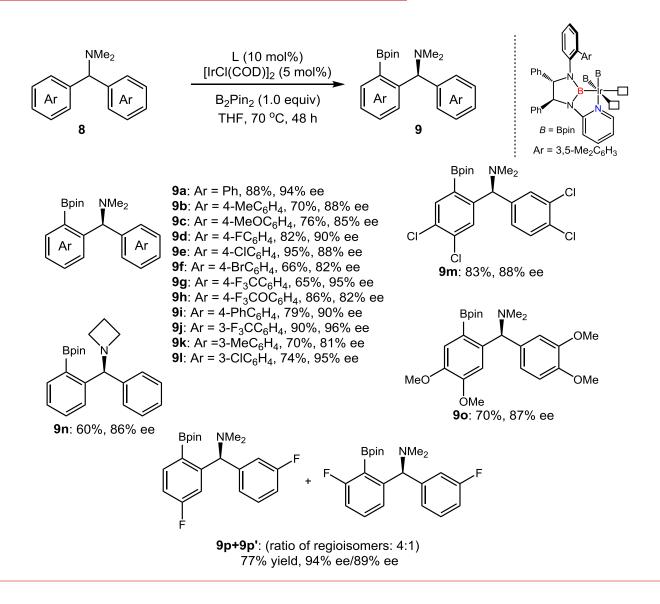
Li Pengfei: Single N,B-ligand for ortho borylation

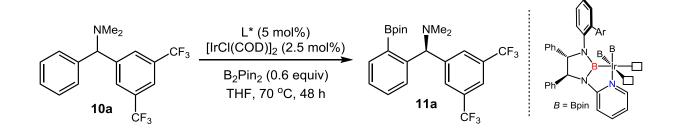

This work: Chiral boryl ligand for ortho borylation




Smith, M. R., III. *et al. J. Am. Chem. Soc.* **2014**, *136*, 14345. Li, P. *et al. J. Am. Chem. Soc.* **2017**, *139*, 91.

Synthesis of Organoboron Compounds


Condition Optimization

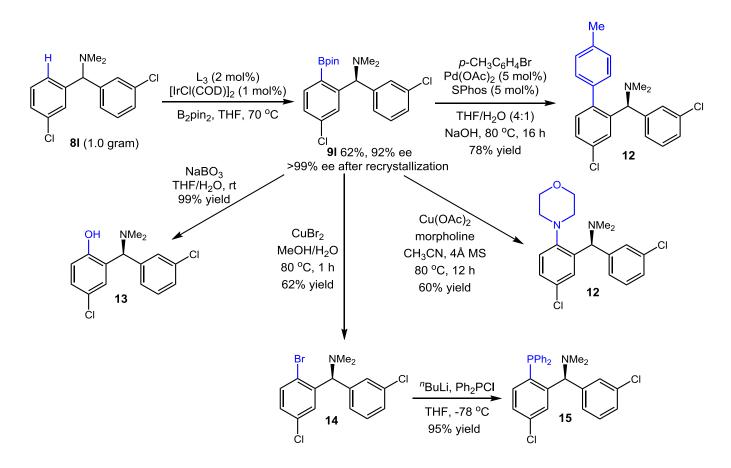

entry ^a	L*	solvent	yield (%) ^b	ee (%) ^c
1	none	THF	trace	n.d.
2	L1	THF	58	19
3	L2	THF	67	13
4	L3	THF	95	90
5	L4	THF	90	85
6	L3	1,4-dioxane	90	74
7	L3	ⁿ hexane	87	74
8 ^d	L3	THF	98(88)	94

^{*a*} Conditions: **8a** (0.1 mmol), $[IrCl(COD)]_2$ (5 mol%), L* (10 mol%), B₂pin₂ (1.0 mmol) in THF (1.0 mL) at 80 °C for 12 h. ^{*b*} Yield of **9a** was determined by ¹H NMR using CH₂Br₂ as internal standard. ^{*c*} The enantiomeric excess was determined by chiral HPLC. ^{*d*} The reaction temperature was 70 °C.

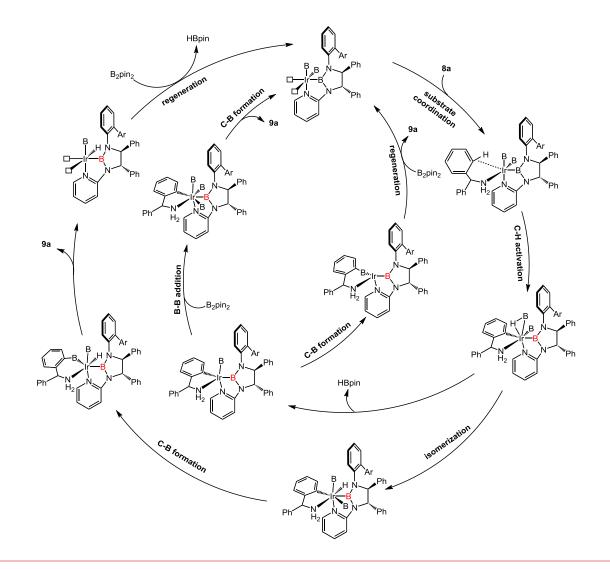
Substrate Scope

Condition Optimization

entry ^a	L*	conv. (%) ^b	ee _{11a} (%) ^d	ee _{10a} (%) ^c	S ^e
1	L3	35	89	48	28
2	L4	26	85	30	17
3	L6	19	96	22	39
4	L7	26	93	33	44
5	L8	30	94	41	68

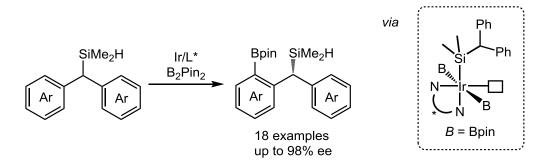

^{*a*} Conditions: **10a** (0.1 mmol), [IrCl(COD)]₂ (2.5 mol%), L* (5 mol%), B₂pin₂ (0.06 mmol) in THF (1.0 mL) at 70 °C for 24-48 h. ^{*b*} Conversion was calculated by $[ee_{10a}/(ee_{11a} + ee_{10a})]$. ^{*c*} ee_{10a} was determined using GC on a chiral B-DA column; ^{*d*} ee_{11a} was determined by chiral HPLC after oxidation with NaBO₃. ^{*e*} s = $K_{fast}/K_{s/ow} = \ln[(1 - conv./100)(1 - ee_{10a}/100)/\ln[(1 - conv./100)(1 + ee_{10a}/100)]$.

Substrate Scope

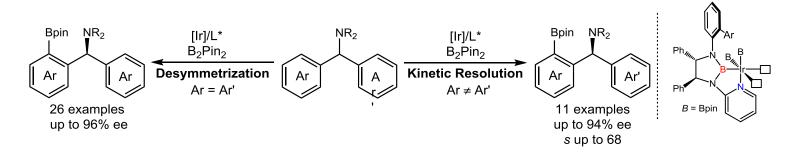

	$ \begin{array}{cccc} & NMe_2 & L^* (5 \text{ mol}\%) \\ & & [IrCl(COD)]_2 (2.5 \text{ mol}\%) \\ & & B_2Pin_2 (0.6 \text{ equiv}) \\ & & THF, 70 \ ^\circC, 24-48 \\ \end{array} $	Ar	Ar' B = Bpin $Ar = 3,5^{-t}Buc$	B C C H 4	
entry ^a	Ar; Ar'	conv. (%) ^b	ee ₁₁ (%) ^c	ee ₁₀ (%) ^c	S ^d
1	Ph; 3,5-(CF ₃) ₂ C ₆ H ₃	30	94	41	68
2	3-MeC ₆ H ₄ ; 3,5-(CF ₃) ₂ C ₆ H ₃	30	90	40	25
3	3-CIC ₆ H ₄ ; 3-MeO-5-MeC ₆ H ₃	28	90	35	27
4	Ph; 3,5-(MeO) ₂ C ₆ H ₃	33	85	42	19
5 ^e	3-PhC ₆ H ₄ ; 3-Me-5-ClC ₆ H ₃	39	87	55	23
6 ^e	3-PhC ₆ H ₄ ; 3-MeO-5-ClC ₆ H ₃	37	87	51	24
7 ^e	3-PhC ₆ H ₄ ; 3,5-(CF ₃) ₂ C ₆ H ₃	27	93	34	33
8 ^{<i>f</i>}	Ph; 3,5-Br ₂ C ₆ H ₃	24	90	28	22
9 <i>g</i>	3-CIC ₆ H ₄ ; 3-MeO-5-CF ₃ C ₆ H ₃	50	88	88	45

^{*a*} Conditions: **10** (0.1 mmol), [IrCl(COD)]₂ (2.5 mol%), L* (5 mol%), B₂pin₂ (0.06 mmol) in THF (1.0 mL) at 70 °C for 24-48 h. ^{*b*} Conversion was calculated by [ee₁₀/(ee₁₁ + ee₁₀)]. ^{*c*} ee₁₀ was determined using GC or HPLC on chiral stationary phase; ^{*c*} ee₁₁ was determined by chiral HPLC after oxidation with NaBO₃. ^{*d*} s = K_{fast}/K_{slow} = In[(1 - conv./100)(1 - ee₁₀/100)/In[(1 - conv./100)(1 + ee₁₀/100)]. ^{*e*} 0.80 equiv of B₂pin₂ was used. ^{*f*} 1.2 equiv of B₂pin₂ was used.

Synthetic Application



Proposed Mechanism


Summary

Asymmetric C(sp²)-H Borylation (Relay-directed)

Hartwig, J. F. et al. Angew. Chem. Int. Ed. 2017, 56, 7205.

Asymmetric C(sp²)-H Borylation (Chelate-directed)

Xu, S. et al. J. Am. Chem. Soc. 2019, 141, 5334.

Optically active organoboron compounds are of great importance in synthetic chemistry, drug discovery, and catalysis. Accordingly, a number of synthetic methods for these compounds have been developed during the past decades. Early methods usually rely on chiral reagents and auxiliaries, including lithiationborylation and Matteson homologation.

Some of these suffered from harsh reaction conditions. Transition-metal-catalyzed asymmetric carbon-boron coupling of carbon-halogen bonds, asymmetric hydroboration of Π unsaturated substrates, carbene insertion into B-H bonds, and C-C coupling of gem-diboron compounds have been developed under mild conditions. These methods are also compatible with a wide range of functional groups. However, substrates for these reactions need to be prefunctionalized, which will cost extra reaction steps, purifications, and other reagents.

We have developed a new class of bidentate chiral boryl ligands, which enable chelate-directed iridium-catalyzed asymmetric C(sp²)-H borylation using free amines as directing groups. With protocol, we realized Ir-catalyzed desymmetrization of this prochiral diarylmethylamines and kinetic resolution racemic diarylmethylamines for the first time. This protocol provides a vast range of optically active diarylmethylamines with excellent enantioselectivities.

We also demonstrated that the borylated products can be used as versatile precursors in the preparation of a variety of functionalized chiral diarylmethylamines, including potent ligands. Further applications of chiral boryl ligands in other catalytic asymmetric transformations are currently underway in our laboratory.

Thanks for your kind attention!