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Retrosynthesis of (±)- Lundurine A
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Preparation of 5
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overall 33% (8 steps)



Meyer-Schuster rearrangement

Saegusa-Ito reaction
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Entry Additive (equiv) T Yield [%]a 

1 none 3 h 34
2 HMPA (12) 5 min 23
3 LiB (20) 1 i 423 LiBr (20) 1 min 42
4 LiCl (20) 1 min 52

[a] Yield of isolated product, except entry 2 in which yield was estimated by 1H NMR 
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spectroscopy.
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Retrosynthesis of (±)- Lundurine B
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Synthesis of Cyclopropane-Fused Indoline 7
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Synthesis of Cyclopropane-Fused Indoline 7
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Kopsia alkaloids are interesting molecules because of their
biological activities and their unique polycyclic skeletons. For theirg q p y y
synthesis or scalable preparation, facile access to the spiroindoline core,
shown in red, should lead to a unified total synthesis of all of the related
alkaloids shown. .

The kopsia alkaloids called lundurines have been particularly attractive
compounds for synthetic chemists because they are the only natural
products which have an indoline cyclopropane structure and most of the
stereogenic centers, including two quaternary carbon atoms, which are
part of the cyclopropane ring. However, while their biological effects, such
as the high toxicities of lundurines B and D toward B16 melanoma cells

d ltid i t i i i ti i t t KB ll land reverse multidrug resistance in vincristine-resistant KB cells, are also
interesting, their limited availability and scalable preparation has
constrained their application as a biological tool. Since their discovery by
Kam and co workers in 1995 the total synthesis of these natural productsKam and co-workers in 1995, the total synthesis of these natural products
has been a challenging issue. However, only two synthetic approaches
have been reported to date.
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In summary, we have succeeded in the total synthesis of (±)-
lundurine A and B by using a new radical cyclization protocol to joinlundurine A and B by using a new radical cyclization protocol to join
the unsaturated ester and ketone. A key cyclopropanation mediated
by SmI2 is quite suitable for the synthesis of a highly functionalized
cyclopropane core because of 1) perfect stereoselectivity and 2)cyclopropane core because of 1) perfect stereoselectivity and 2)
efficacy of transformation of both oxygen functionalities to achieve
elegant construction of the C, D, and F rings at a late stage in the
synthesis. The spiroindoline intermediate 5 is expected to be ay p p
versatile intermediate for the unified total synthesis of the Kopsia
alkaloid family and further studies are currently underway.
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Meyer-Schuster rearrangement
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Saegusa-Ito reaction

II
OTMS

Pd(OAc)2
OTMS

PdII

TMSOAc

O
PdII

O
PdII

O

H

PdII
O

PdIIH

O

24


