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Amphidinolide N

 Isolated from the symbiotic dinoflagellates of the genus Amphidinium in
Okinawa;

 A complicated family member with a total of 13 stereocenters; A complicated family member with a total of 13 stereocenters;

 Exhibit potent cytotoxicity against murine lymphoma L1210 and human
epidermoid carcinoma KB cell lines.
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Southern Fragment Synthesis (First Generation)Southern Fragment Synthesis (First Generation)
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Northern Fragment Synthesis (First Generation)Northern Fragment Synthesis (First Generation)
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Assembly of the Southern and Northern Fragments (I)Assembly of the Southern and Northern Fragments (I)
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Assembly of the Southern and Northern Fragments (I)Assembly of the Southern and Northern Fragments (I)
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EpoxidationEpoxidation of of DieneDiene 1010

entry coditions convb 24:25b dr (24) b

1 DMDO 100% 0:100 N/A

2 mCPBA 100% 91:9 1 6:12 mCPBA 100% 91:9 1.6:1

3 Ti(OiPr)4, TBHP, 4Å MS 100% 100:0 3:1

4 VO(acac)2, TBHP, 5Å MS 100% 100:0 >1:20

5 3,5-di(CF3)-benzonitrile
H2O2, KHCO3

72 88:12 6:1
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Northern Fragment Synthesis (Second Generation)Northern Fragment Synthesis (Second Generation)
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Assembly of the Southern and Northern Fragments (II)Assembly of the Southern and Northern Fragments (II)
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Highlighting a Judicious Protecting Group StrategyHighlighting a Judicious Protecting Group Strategy
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Highlighting a Judicious Protecting Group StrategyHighlighting a Judicious Protecting Group Strategy
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Completion of Completion of desdes--EpoxyEpoxy--AmphidinolideAmphidinolide N (41)N (41)
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Completion of Completion of desdes--EpoxyEpoxy--AmphidinolideAmphidinolide N (41)N (41)
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SummarySummary

 0 35% overall yields 22 longest linear and 33 total steps 0.35% overall yields, 22 longest linear and 33 total steps

 Ru-catalyzed alkene-alkyne; Krische allylation; Pd-asymmetric
allylic alkylation; Mukaiyama aldol; Marshall coupling; Ru-catalyzed
alkene-alkyne; Keck allylation.
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The First ParagraphThe First Paragraph

Macrolides provide a remarkable source for drug
development due to their marvelous structural diversity

d bi l i l ti it F l li tiand biological activity. For example, everolimus, an anti-
rejection drug that is listed as one of the Top 100 Brand
Name Drugs by Retail Sales in 2016 is essentially aName Drugs by Retail Sales in 2016, is essentially a
rapamycin derivative. Therefore, syntheses and
biological assessments of macrolides and their
analogues have been enthusiastically pursued.

The amphidinolide family of natural products, isolated
f th bi ti di fl ll t f thfrom the symbiotic dinoflagellates of the genus
Amphidinium in Okinawa, is a unique class of cytotoxic
macrolides Over 40 members have been disclosed bymacrolides. Over 40 members have been disclosed by
Kobayashi, among which amphidinolide N (1) exhibits
the most potent cytotoxicity against murine lymphoma

26
L1210 and human epidermoid carcinoma KB cell lines,



The First ParagraphThe First Paragraph

with IC50 values of 80 and 90 pM, respectively.
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The Last ParagraphThe Last Paragraph

In conclusion, des-epoxy-amphidinolide N (3) was
accomplished in 22 longest linear and 33 total steps.
The synthesis took advantage of a convergent designThe synthesis took advantage of a convergent design
that efficiently joined two fragments with similar levels of
structural complexity using a Ru-catalyzed alkene-structural complexity using a Ru catalyzed alkene
alkyne coupling and a macrolactonization. Three
generations of synthetic endeavors were reported. The
first generation validated the key Ru AA coupling
stitching strategy and realized a challenging
chemoselective allylic epoxidation of a complexchemoselective allylic epoxidation of a complex
macrocycle, but left installation of the α,α′-dihydroxy
ketone moiety and scalable preparation of the southerny p p
fragment as unanswered questions. The second
generation addressed the scalability of the southern

28
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The Last ParagraphThe Last Paragraph

coupling efficiency, but revealed that the thioether was
incompatible with the Rubottom oxidation alongside the
deprotection troubles Evolving from these twodeprotection troubles. Evolving from these two
generations of synthetic efforts, the final generation not
only logically designed the whole protecting grouponly logically designed the whole protecting group
strategy but also successfully installed the C14-OH via a
carefully tuned Rubottom oxidation, allowing us to
realize the synthesis of des-epoxy-amphidinolide N.
Several remarkable asymmetric transition-metal-
catalyzed react ions were deployed includingcatalyzed react ions were deployed, including
Mukaiyama aldol (Sn), Marshall coupling (Pd−In), Pd-
AAA (Pd), and Krische allylation (Ir). Structural( ), y ( )
elucidation of the THP ring of des-epoxy-amphidinolide
N (41) not only verified our assignments but also led us

29
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The Last ParagraphThe Last Paragraph

amphidinolide N (1).

30



MukaiyamaMukaiyama AldolAldol ReactionReaction
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EnyneEnyne MetathesisMetathesis
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PdPd--catalyzed Asymmetric catalyzed Asymmetric AllylicAllylic AlkylationAlkylation
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RuRu AA CouplingAA Coupling
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KrischeKrische AllylationAllylation
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Keck Asymmetric Keck Asymmetric AllylationAllylation
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