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ABSTRACT: A N2-bridged diiron complex [Cp*-
(Ph2PC6H4S)Fe]2(μ-N2) (1) has been found to catalyze
the hydroboration of N-heteroarenes with pinacolborane,
giving N-borylated 1,2-reduced products with high
regioselectivity. The catalysis is initiated by coordination
of N-heteroarenes to the iron center, while the B−H bond
cleavage is the rate-determining step.

Reduction ofN-heteroarenes provides valuable dearomatized
N-heterocycles, such as dihydropyridines, which constitute

an important family in organic chemistry, the pharmaceutical
industry, and biological transformations.1 For example, 1,4-
dihydropyridine and its analogues are known to be organo-
hydride donors and serve as mild reducing agents in organo-
catalysis and sustainable synthesis.2 1,2-Dihydropyridines are
important building blocks in the construction of natural products
and drug molecules containing N-heterocycles.3 Although
catalytic hydrogenation of pyridines was considered to be a
straightforward strategy for the synthesis ofdihydropyridines,4 the
reactions usually are carried out under harsh conditions and
sometimes suffer from poor chemo- or regioselectivity. Con-
sequently, exploration of alternative methods for the reduction of
pyridines is highly desirable. Catalytic hydrosilylation5 or
hydroboration6 of pyridines enables selective reduction of N-
heteroarenes.7 In this context, 1,4-reduced products have been
obtained using Mg,6 Ru,8 and organoborane9 catalysts for
hydrosilylation or hydroboration of pyridines. Systems that
achieve 1,2-reduction of pyridines include [RhCl(cod)]2/PCy3/
HBpin,10 [Cp*2LaH]2/HBpin,

11 [(DIPPnacnac)CaH·THF]/
PhSiH3,

12 and [IrCl(coe)2Cl]2/Et2SiH2.
13

Establishing catalysis basedon themost inexpensivemetal, iron,
for regioselective reduction ofN-heteroarenes is significant and of
interest. In the past two decades, considerable progress has been
made in iron-catalyzed reduction of unsaturated hydrocarbons
such as ketones,14 imines,15 esters,16 amides,17 nitriles,18 and
alkynes.19 However, iron-catalyzed dearomative reduction of
pyridines has been rarely documented. An example of this is the
iron(II) complex supported by a bis(phosphino)amine pincer
ligand for catalytic hydrogenation of N-heteroarenes to the
tetrahydroproducts rather than todihydropyridines.20 Inprevious
studies, we investigated the stoichiometric reduction of N-
benzylpyridinium cations (BNA+) to BNAH by iron(II) hydrides
of Cp*(P−P)FeH-type (P−P = chelating diphosphine).21

However, these iron(II) hydrides are inactive toward catalytic
hydroboration or hydrosilylation of pyridines. It is noteworthy
that synergism of ruthenium-thiolate reactivity enabled the
catalysis of 1,4-hydrosilylation of pyridines and its benzannulated
congeners.8c,22 In this communication, we present a dinitrogen-

bridged diiron compound [Cp*(Ph2PC6H4S)Fe]2(μ-N2) (1),
which achieves the regioselective 1,2-hydroboration of N-
heteroarenes with good to excellent yields. The initial step of the
catalysis involves coordination of N-heteroarenes to the iron
center rather than activation of the B−H bond.
Compound 1was synthesized in straightforward fashion by the

reaction of [Cp*Fe(NCMe)3]PF6 with Ph2PC6H4SNa in THF at
room temperature (yield: 75%). Recrystallization was accom-
plished by slow diffusion of pentane into a toluene solution of 1 at
−30 °C. X-ray crystallographic analysis of 1 revealed the structure
of a μ-N2 diiron complex with the formula of [Cp*(Ph2PC6H4S)-
Fe]2(μ-N2) (Figure 1).

Compound 1 has a centrosymmetric arrangement in which the
two Cp*Fe(Ph2PC6H4S)moieties are bridged essentially linearly
by an NN ligand (∠Fe−N−N = 177.3(4)°). Each iron atom
adopts typical three-legged piano-stool geometry. The NN
moiety is weakly coordinated between two Fe centers and
minimally activated, as indicated by the short N−N distance of
1.130(6) Å. Such N−N separation is close to that of a free N2
molecule (1.0977 Å)23 and comparable to the N−N distance
reported for a bridging dinitrogen diiron complex.24 In Raman
spectroscopy, theN−Nstretching frequency of1was displayed at
2016 cm−1 as a medium-strong band (Supporting Information,
Figure S1). Although N2-bridged diferrous complexes are
known,25 only a fewof themhavebeen structurally identified.24a,26

We began by examining the role of 1 in the catalytic
hydroboration of pyridine (2a) with HBpin. At a loading of 1
mol % of 1 in benzene at room temperature, pyridine was
hydroborated to afford N-borylated 1,2-dihydropyridine (3a).
The conversion was only 39% after 24 h, but the yield of
hydroboratedproduct increased to61%at50°C.Noreaction took
place in 36h in the absenceof1 showing that the iron compound is
responsible for this conversion. When 9-borabicyclo[3.3.1]-
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Figure 1. Structure of 1 (50% probability thermal ellipsoids).
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nonane (9-BBN)or catecholborane (HBcat)was employed as the
reducing agent, hydroboration of pyridine was not observed even
at 50 °C.
The substrate scope of the hydroboration reaction was further

explored. Pyridines with both electron-donating and electron-
withdrawing groups undergo hydroboration efficiently affording
the corresponding 1,2-dearomatized products. Functional groups
such as CF3, phenyl, OMe, and COOMe were all found to be
tolerated under the reaction conditions (Table 1). In para-

substituted pyridines, it is more likely that the electron-
withdrawing group accelerates the hydroboration (3b−3e). For
example, at room-temperature, hydroboration of 4-trifluorome-
thylpyridine gave 3b in 66% yield, compared to 28% yield of 3c
obtained for 4-methylpyridine. In the hydroboration of meta-
substituted pyridines, the H atom was delivered to the C2-
position, providing the N-boryl-3-substituted-1,2-dihydropyri-
dine as the major product. Even halides were compatible with the
1,2-regioslective hydroborations (3h−3j), andnodehalogenation
was observed.8b,c,27

Interestingly, 2-phenylpyridine failed to undergo hydrobora-
tionunder the catalytic conditions evenusing2.5mol%of1, while
the reaction with 2-picoline resulted in the formation of a 66:34
mixture of 1,2- and 1,4-dihydropyridine in 62%yield (3n and3n′)
after 48h.The ratio of3n/3n′ retains ca. 65:35during the reaction
asmonitoredby 1HNMRspectrumwith time.Especially, this ratio
is also independent of the amount of 1 used (Table S3−S4).
Blocking C4 of 2-methylpyridine with a methyl group protected
2,4-lutidine from1,4-hydroborationaffording3o in79%yieldwith

a reaction time prolonged to 40 h. The reaction with 3,5-lutidine
gave the 1,2-hydroborated product (3p, 76% yield) exclusively.
The substrate scope is not limited to pyridines. The iron

compound also displayed excellent activity in hydroboration of
benzofused N-heterocycles including quinolines, isoquinolines/
phenanthridine and 1-methyl-1H-benzo[d]imidazole (Table 2).

In the reaction of quinoline, a mixture of 1,2- and 1,4-
dihydroquinoline (5a/5a′= 38:62) was obtained. Hydroboration
was not observed for 2-methylquinoline (4b) but 4-methylquino-
line was reduced selectively to give 4-methyl-1,2-dihydroquino-
line (5c).
The reactions of isoquinolines proceeded smoothly at room

temperature to afford 1,2-hydroborated products in good to
excellent yields (5d−5f). In particular, the C−B bond in 5f was
tolerated in this protocol, which facilitates further functionaliza-
tion of the dearomatized products. Selective reduction of
isoquinolines to dihydroisoquinolines is challenging because of
the possibility of overreduction.28 When methyl-1H-benzo[d]-
imidazole was subjected to catalytic hydroboration, the 1,2-
reducedproduct (5g)wasobtained inquantitative yield.The iron-
catalyzed hydroboration can be scaled up successfully without
significant loss in efficiency. As indicated by hydroboration of
phenanthridine, the 1,2-dearomatized product (5h) was isolated
in 88% yield after recrystallization. The structure of 5h was
unequivocally established by single-crystal X-ray analysis.
To gain further insight into the initial step of the iron-catalyzed

hydroboration, several stoichiometric reactions were carefully
examined. We found that 1 reacted preferentially with N-
heteroarenes rather than activating HBpin. Judging from the
NMR and ESI-MS spectra, compound 1 is stable toward HBpin.
This result is consistentwith our previous findings that addition of
HBpin across the iron−thiolate bond is thermodynamically
unfavorable.29 Unlike HBpin, N-heteroarenes can replace the N2

Table 1. Iron(II)-Catalyzed 1,2-Hydroboration of Pyridinesa

aReaction conditions: 2 (0.24 mmol), HBpin (0.48 mmol, 2 equiv), 1
(1 mol %, 0.0024 mmol), and tetraethylsilane (internal standard, 0.053
mmol) in 0.6 mL of C6D6 at 50 °C for 24 h. Yields were determined
by 1H NMR analysis based on 2. bNo reaction. c2.5 mol % of 1, 0.06
mmol.

Table 2. Catalytic 1,2-Hydroboration of BenzofusedN-
Heterocyclesa

aReaction conditions: 4 (0.24 mmol), HBpin (0.48 mmol, 2 equiv), 1
(1 mol %, 0.0024 mmol), and tetraethylsilane (internal standard, 0.053
mmol) in 0.6 mL of C6D6. Yields were determined by 1H NMR
analysis based on 4. bNo reaction.
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ligand in 1 to afford the mononuclear iron(II) complex
[Cp*(Ph2PC6H4S)Fe(N-heteroarene)].
Treating a brown solution of1 in benzenewith isoquinoline led

to a rapid color change to black. The resulting mononuclear
complex [Cp*(Ph2PC6H4S)Fe(C9H7N)] (6) was characterized
by X-ray crystallographic analysis (Figure 2). Moreover, the

intermediate [Cp*(Ph2PC6H4S)Fe(C5H5N)] (7, Figure S6) was
isolated fromthereactionmixtureofpyridine,HBpin, and1at−30
°C. In both 6 and 7, the substrates were coordinated to the iron
center through an N atom. Such iron−substrate complex
[Cp*(Ph2PC6H4S)Fe(C6H7N)] (8, Figure S7) was also isolated
for 3-methylpyridine. However, binding of 2-phenylpyridine
(2m) to the iron center seems to be unfavorable. The compound
crystallized fromthereactionmixtureof1and2m inall caseswas1.
Catalytic reduction of 2-phenylpyridine by hydrosilylation or
hydroboration was found to be difficult,8c,9a,11 which is probably
due to the steric and electronic effects arising from the phenyl
group.
A stoichiometric reaction of6withHBpin at room temperature

gave 5d exclusively within 10 min (Scheme 1). The generated

organoiron specieswas trappedbyCOgiving [Cp*(Ph2PC6H4S)-
Fe(CO)] (9) (Figures S9−10).29The isoquinoline ligand in7 can
be replaced by a more Lewis acidic borane 9-BBN, producing the
stablemonomeric ferrous-borane adduct 10 (Figures S11−12).29
This is consistent with our observation that the hydroboration of
pyridine by 9-BBN was unsuccessful.
Notably, both6 and7 showed activity comparable to that of1 in

the catalytic hydroboration of pyridine and isoquinoline,
indicating intermediacy of [Cp*(Ph2PC6H4S)Fe(N-heteroar-
ene)] in the catalysis. The kinetic analysis was performed for the
catalytic hydroboration of isoquinoline by HBpin. A plot of the
initial rate (vi) for the formation of5d vs [1] indicated the reaction
was first-order in [1], while vi was found to be independent of the
concentration of isoquinoline (Figures S13−S14).The zero order
for [isoquinoline] suggests that binding of substrate to the iron
center is not rate-limiting. Notably, further kinetic studies showed
that the reaction rate is first order in [HBpin], and no inhibition
was observed at high initial concentrations of HBpin (Figure
S15).11,30 In particular, a kinetic isotope effect (KIE) of 2.33 was
obtained using DBpin (Figure 3), indicating that the B−H bond
cleavage is the rate-determining step in the catalytic reaction.31

In the case of the hydroboration of quinoline catalyzed by the
Mg−H complex,32 formation of a 1,4-addition product was
suggested by direct hydride transfer to the C4 position of

quinoline.33 However, 1 is stable toward HBpin, and in our
catalysis, the generation of Fe(II)−H species has not been
detected by 1H NMR spectroscopic analysis. Formation of 1,2-
hydroborated products might be due to the ortho-position of the
N-heterocycle in [Cp*(Ph2PC6H4S)Fe(N-heteroarene)] favor-
ing the nucleophilic attack by the hydride of HBpin. Blocking all
the C2 positions of pyridine with substituents, as in 2,6-lutidine
(2q) or 2-methylquinoline (4b), failed to steer the 1,4-
hydroboration. However, substituents in the para-position of
pyridine allow the 1,2-hydroboration.
The phosphinothiolate ligand in 1 is crucial to the catalysis. In

contrast, piano-stool iron(II) complexes with chelating diphos-
phine ligands such as Cp*(Ph2PN

tBuPPh2)FeH, Cp*(1,2-
Ph2PC6H4PPh2)FeH, and [Cp*(Ph2PN

tBuPPh2)Fe(N2)]
+ are

inactive in the hydroboration of N-heteroarenes. On the basis of
experimental results, the catalytic mechanism is proposed in
Scheme 2. Catalytic generation of borenium ions fromHBpin has

been described for the ruthenium(II)−thiolate system.34 The
thiolate site in6 could facilitate thehydride transfer fromHBpin to
6 through S→ B interaction (M1) and capture the borenium ion
after theB−Hbondcleavage(M2). Subsequent transferringof the
borenium to the reducedN-heterocycle provides thefinal product
and regenerates the 16-electron iron(II) active species 1′.29 Note
that the regioselectivity of the dihydropyridine products is

Figure 2. Structure of 6 (50% probability of thermal ellipsoids).

Scheme 1. Reaction of 6 with HBpin, Then with CO

Figure 3. Initial rates of reductionof isoquinoline byHBpin andDBpin in
the presence of 1.

Scheme 2. Proposed Catalytic Cycle for Hydroboration of
Isoquinoline by 1
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sensitive to the substituent of the precursor.1d The regioisomeric
N-boryl-1,4-product for 2-picoline andquinoline could be formed
by thehydride transfer to thepara-positionof theN-heterocycle.32

In summary,wehave developed aN2-bridgeddiiron complex as
an efficient precatalyst for regioselective 1,2-hydroboration ofN-
heteroarenes with HBpin. This catalysis exhibits excellent
regioselectivity and broad functional group compatibility and
enables the large scale synthesis of 1,2-dihydropyridines.
Mechanistic studies reveal that coordination of the substrate to
the iron center initiates the catalysis and that the B−H bond
cleavage is the rate-determining step. Future work will focus on a
detailed mechanistic analysis and an expansion of catalytic
reactions based on such iron−thiolate compound.
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