Literature Report 6

Eight-Step Total Synthesis of Phalarine

Reporter: Zi-Biao Zhao Checker: Xiao-Yong Zhai Date: 2019-5-27

Li, L.; Yuan, K.; Jia, Q.; Jia, Y.* Angew. Chem. Int. Ed. **2019**, *58*, 6074.

CV of Prof. Yanxing Jia

Background:

- > 1993-1997 B.S., Lanzhou University
- >1997-2002 Ph.D., Lanzhou University (Tu, Y.-Q)
- > 2002-2007 Postdoc., French National Research Center
- > 2007-2011 Associate Professor, Peking University
- > 2011-Now Professor, Peking University

Research:

- Total synthesis and biomimetic synthesis of natural products.
- Drug synthesis and structure-activity relationship.
- New methods and strategies for organic synthesis.

2 Total Synthesis of Phalarine by Danishefsky

3 Total Synthesis of Phalarine by Jia

Introduction

(Phalaris coerulescens)

- Phalarine was isolated from Phalaris coerulescens by Colegate in 1999.
- Phalarine possesses an benzofuro[3,2-b]indoline moiety, which has not been found in any other natural product.
- The toxicity effect of this new alkaloid is yet to be established.

Anderton, N.; Cockrum, P. A.; Colegate, S. M.; Willing, R. I. Phytochemistry 1999, 51, 153.

Original Strategy Toward Phalarine

Li, C.; Chan, C.; Heimann, A. C.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2007, 46, 1448.

Preliminary Synthesis

Retrosynthetic Analysis

Total Synthesis of Phalarine

Possible Mechanistic Pathways of the Rearrangement

Li, C.; Chan, C.; Heimann, A. C.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2007, 46, 1444.

Wagner-Meerwein Rearrangement

Wagner, G. J. Russ. Phys. Chem. Soc. 1899, 31, 690.

Pictet-Spengler Reaction

Total Synthesis of Phalarine

Japp-Klingemann Reaction

Japp, F. R.; Klingermann, F. Ber. 1887, 20, 2942.

Total Synthesis of Phalarine

Gassman Indole Synthesis

Sommelet-Hauser Rearrangement

Sommelet, M. Compt. Rend. 1937, 205, 56.

Structure and Biogenetic Synthesis of Phalarine

Li, L.; Yuan, K.; Jia, Q.; Jia, Y. Angew. Chem. Int. Ed. 2019, 58, 6074.

Previous Work

a) Danishefsky's initial attempts toward the synthesis of phalarine

Danishefsky, J. et al. Tetrahedron Lett. 2006, 47, 4839.

b) Vincent and Lei's synthesis of benzofuro[3,2-b]indoles

Lei, A. *et al. Nat. Commun.* **2017**, *8*, 775. Vincent, G. *et al. Angew. Chem. Int. Ed.* **2014**, 53, 11881.

c) Vincent and Lei's oxidative coupling of phenol with 2,3-disubstitued indole

Lei: electricity, ZnCl2; A: 25%, B: 70%

Lei, A. *et al. Nat. Commun.* **2017**, *8*, 775. Vincent, G. *et al. Angew. Chem. Int. Ed.* **2014**, 53, 11881.

Reverse the Regioselectivity

Screening of Protecting Groups

$\begin{array}{c} & & & \\ & &$				
Entry	Compound	R	Yield (%) ^b	Ratio of 9 :10
1	7a	Ac	97	1:6.5
2	7b	Cl ₃ CCO	0	-
3	7c	Bz	98	1:0.9
4	7d	Piv	53	1:0.8
5	7e	acryloyl	82	1:1
6	7f	Ts	69	1:3.1
7	7g	Cbz	45	0:1
8	7h	<i>p</i> -Br-Bz	86	1:0.9
9	7 i	<i>p</i> -NO ₂ -Bz	87	1:0.9
10	7j	<i>p</i> -MeO-Bz	95	1:1
11	7k	o-Me-Bz	86	1:1.1
12	71	1-naphthoyl	97	1:0.9
13	7m	2-naphthovl	97	1:0.9

^a Reaction conditions: **7** (0.1 mmol), **8a** (0.15 mmol), PIDA (0.15 mmol), HBF₄ (0.02 mmol), HFIP (1 mL), RT, 1 min. ^b Yield of isolated product is given.

Substrate Scope of Oxidative Coupling

 $\begin{array}{l} {\sf R}^1 = {\sf OMe}, \, {\sf R}^2 = {\sf H}, \, {\sf 9c}; \, 52\%, \, 10c; \, 46\% \\ {\sf R}^1 = {\sf OMe}, \, {\sf R}^2 = {\sf Br}, \, {\sf 9n}; \, 40\%, \, 10n; \, 13\% \\ {\sf R}^1 = {\sf OMe}, \, {\sf R}^2 = {\sf F}, \, {\sf 9o}; \, 36\%, \, 10o; \, 22\% \\ {\sf R}^1 = {\sf OPh}, \, {\sf R}^2 = {\sf H}, \, {\sf 9p}; \, 47\%, \, 10p; \, n.d. \\ {\sf R}^1 = {\sf H}, \, {\sf R}^2 = {\sf H}, \, {\sf 9p}; \, 47\%, \, 10p; \, n.d. \\ {\sf R}^1 = {\sf NHTs}, \, {\sf R}^2 = {\sf H}, \, {\sf 9r}; \, 87\%, \, 10r; \, 8\%. \\ {\sf R}^1 = {\sf NHBoc}, \, {\sf R}^2 = {\sf H}, \, {\sf 9s}; \, 65\%, \, 10s; \, 29\%. \\ {\sf R}^1 = {\sf NHAc}, \, {\sf R}^2 = {\sf H}, \, {\sf 9t}; \, 83\%, \, 10t; \, 13\%. \\ {\sf R}^1 = {\sf NHAc}, \, {\sf R}^2 = {\sf CI}, \, {\sf 9u}; \, 64\%, \, 10u; \, 17\%. \\ {\sf R}^1 = {\sf NHAc}, \, {\sf R}^2 = {\sf F}, \, {\sf 9v}; \, 64\%, \, 10v; \, 17\%. \\ {\sf R}^1 = {\sf NHCOCF}_3, \, {\sf R}^2 = {\sf H}, \, {\sf 9w}; \, 50\%, \, 10w; \, n.d. \\ \end{array}$

R¹ = NHTs, **9x**: 47%, **10x**: 8%. R¹ = NHBoc, **9y**: 54%, **10y**: 40% R¹ = NHAc, **9z**: 50%, **10z**: 42%..

R¹ = NHAc, **9aa**: 59%, **10aa**: 36% R¹ = NHTs, **9ab**: 49%, **10ab**: 24%.

R³ = Cl, **9ac**: 35%, **10ac**: 53%. R³ = OMe, **9ad**: 12%, **10ad**: 58%.

9ae: 25%, 10ae: n.d.

Reaction of 7a with *p*-NHAc-phenol and *p*-NHTs-phenol

Retrosynthetic Analysis

phalarine (1)

Total Synthesis of Phalarine

Summary

Danishefsky 's Work:

- 11 steps and 22.4% overall yield
 - Rearrangement strategy

Jia's Work:

- 8 steps and 5.49% overall yield
- Oxidative coupling of indole and phenol

During the course of an agronomic investigation of the suitability of introducing Phalaris coerulescens into Australia, Colegate and co-workers isolated and identified a novel furanobisindole alkaloid, named phalarine. Structurally, **1** possesses an unprecedented benzofuro[3,2-b]indoline moiety, which has not been found in any other natural product. However, its regioisomeric benzofuro[2,3-b]indoline moiety is found in natural products such as diazonamide A and azonazine. Biogenetically, **1** is postulated to arise from the direct oxidative coupling of N-Me-tetrahydro- β -carboline with 5hydroxy-7-methoxygramine since **2** has been previously isolated from Phalaris coerulescens.

In summary, we have addressed the challenge of the regioselectivity of the direct oxidative coupling reaction between indoles and phenols to construct the benzofuro[3,2-*b*]indolines. The resulting method enabled us to accomplish the total synthesis of phalarine in only eight steps from commercially available tryptamine. This synthesis represents the shortest pathway for the total synthesis of phalarine to date.

Acknowledgement

