Literature Report (3)

Light-Mediated Total Synthesis of 17-Deoxyprovidencin

Reporter: Yue Ji Checker: Xian-Feng Cai Date: 2014/06/17

Mulzer, J. *et al.* Angew. Chem. Int. Ed. **2014**, 53, 3859.

- Introdunction
- Retrosynthesis of 17-deoxyprovidencin
- Total Synthesis of 17-deoxyprovidencin
- > The first generation approach to
 - 17-deoxyprovidencin
- Summary

Education

1974	PhD in Organic Chemistry, Supervisor Professor Rolf Huisgen, University of Munich
1974-1975	Postdoctoral fellow Harvard University (Supervisor Professor E. J. Corey)
1984-1995	Free University of Berlin
1996-	University of Vienna

Prof. Dr. Johann Mulzer University of Vienna

Research Interests

Asymmetric Synthesis of Natural Products (Macrolides, Alkaloids, Terpenes,

Peptides and Amino Acids);

Development of Synthetic Methodology (among aldol additions, β-lactone chemistry, olefinations, ring enlargements, sigmatropic rearrangements); Elucidation of Organic Reaction Mechanisms

R = OH; providencin (**1**) R = H; 17-deoxyprovidencin (**2**)

Mulzer, J. *et al.* Synlett **2009**, 9,1357. Mulzer, J. *et al.* Angew. Chem. Int. Ed. **2014**, 53, 3859.

Retrosynthetic analysis of 17-deoxyprovidencin

The second generation approach

Synthesis of Cyclobutane Moiety

Mulzer, J. et al. Angew. Chem. Int. Ed. 2014, 53, 3859.

The second generation approach

Wipf cyclization

The second generation approach

Synthesis of phenylseleno-substituted lactone

Mulzer, J. et al. Synlett 2009, 9,1357.

The second generation approach

Δ-11,12-epoxide

Δ-7,8-epoxide

Synthesis of 17-deoxyprovidencin

The first generation approach

Synthesis of the Western fragement

Mulzer, J. et al. Synlett 2009, 9,1357.

The first generation approach

Synthesis of vinylfuran via Wipf cyclization

The first generation approach

Summary

R = OH; providencin (**1**) R = H; 17-deoxyprovidencin (**2**)

17 steps, 1.6% yield

The class of furanocembranoids offers a diverse range of structurally and biologically interesting natural compounds. In 2003, a highly oxygenated furanobutenolide-based cembrane named providencin (1) was isolated from the Caribbean sea plume *Pseudopterogorgia kallos* (Bielschowsky, 1918) by the Rodriguez group. The biosynthesis of **1** is unknown, even though bipinnatin J has been shown to be a plausible precursor. In terms of its biological properties, **1** exhibits moderate activity against human breast cancer and lung and CNS cancer cell lines. The relative configuration was determined by single-crystal X-ray analysis, but the absolute configuration has remained unknown.

Compared to other members of the furanocembranoid family, **1** contains two unusual structural features: a cyclobutanol moiety and a Δ -7,8 *trans* epoxide in the macrocyclic ring. The crystal structure of **1** reveals a perpendicular arrangement of butenolide and furan in the macrocycle; the high ring strain of this macrocycle makes it impossible to build a Dreiding model without breaking any bonds. Evidently, the ring strain is mainly due to the *trans* arrangement of the Δ -7,8 epoxide and the rigid angle of 144° between the C7 and C2 appendages around the furan ring.

In conclusion, we have presented a synthesis of 17deoxyprovidencin (2) in 17 steps along the longest linear sequence with an overall yield of 1.6 %. Key steps include an aldol addition with subsequent oxidative elimination of selenide, a Z-selective RCM macrocyclization, a photo-induced Z/E isomerization to a highly strained conformationally restricted ring system, and a stereoselective epoxidation of the *E* olefin. To corroborate our biosynthetic hypothesis, various allylic oxidations at the C17 position, including enzymatic hydroxylations, remain to be performed.