

Covalent Organic Frameworks for *Heterogeneous* Catalysis

报告: 时磊 检查: 冯广收

(nano)porous organic polymer

Amorphous

HCPs Hypercrosslinked Polymers"

PIMs
Polymers of Intrinsic Microporosity

CMPs Conjugated Microporous Polymers Crystalline

COFs "Covalent Organic Frameworks"

N^{//}

N

Covalent Bond

✓ reversibility

 \sim

CN

✓ rigid planar

Nitrile Cyclotrimerization

Imine Formation

Porous structure

Topology

Shape of units

linear

Synthesis of COFs

Solvothermal synthesis

2~9 days 80~120 °C

Ionothermal synthesis

Molten ZnCl₂ 400°C

Microwave synthesis

200 times faster than solvothermal synthesis

2. COF材料的催化应用

Wang, W. et al. J. Am. Chem. Soc. 2011, 133, 19816.

Ме

97%

97%

97%

Wang, W. et al. J. Am. Chem. Soc. 2011, 133, 19816.

Jiang, D. et al. *Nature Chem.*, **2015**, *7*, 905.

Entry	Catalyst	Time (h)	Conv. (%)	Yield (%)	Ee (%)	dr
1	[(S)-Py] _{0.17} -TPB-DMTP-COFs	12	100	95	92	90:10
2	[(S)-Py] _{0.34} -TPB-DMTP-COFs	17	100	93	91	90:10
3	[(S)-Py] _{0.50} -TPB-DMTP-COFs	34	100	95	89	88:12
4	((S)-1-(pyrrolidin-2-yl)methyl)-4- phenoxymethyl-triazole	22	100	96	92	91:9
5	[(S)-Py] _{0.25} -H ₂ P-COF	36	-	-	-	-

Cycle	Time (h)	Conv. (%)	Yield (%)	Ee (%)	dr	Ry(wt %)
1	6	100	95	94	97:3	>99
2	7	100	93	94	97:3	>99
3	8	100	94	94	97:3	>99
4	11	100	92	94	97:3	>99
5	13	100	92	93	97:3	>99

COF Cat. = [(S)-Py]_{0.17}-TPB-DMTP-COFs

О

展望

■ 手性COF材料 →→→ 手性催化 手性分离

■ 模板法合成COF材料

MOF	→ COF	破坏配位键
COF	→ COF	B-O键水解
2D	→ 3D	环加成

