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Abstract: The development of biomimetic chemistry based on
the NAD(P)H with hydrogen gas as terminal reductant is
a long-standing challenge. Through rational design of the
chiral and regenerable NAD(P)H analogues based on planar-
chiral ferrocene, a biomimetic asymmetric reduction has been
realized using bench-stable Lewis acids as transfer catalysts. A
broad set of alkenes and imines could be reduced with up to
98% yield and 98 % ee, likely enabled by enzyme-like
cooperative bifunctional activation. This reaction represents
the first general biomimetic asymmetric reduction (BMAR)
process enabled by chiral and regenerable NAD(P)H ana-
logues. This concept demonstrates catalytic utility of a chiral
coenzyme NAD(P)H in asymmetric catalysis.

The development of biomimetic approaches plays an impor-
tant role in agrochemicals, materials, and pharmaceuticals. In
the cell, reduced nicotinamide adenine dinucleotide (NADH)
and nicotinamide adenine dinucleotide phosphate (NADPH)
are recognized as a couple of crucial enzymes, and over 400
enzyme redox reactions depend on the interconversion of
NAD(P)H and NAD(P)+, reactions such as the citric acid
cycle, glycolysis, and amino-acid decomposition.[1] Therefore,
efficient methods to realize biomimetic asymmetric reduc-
tions (BMAR) have been studied intensively, and the design
of NAD(P)H analogues, transfer catalysts, and regeneration
catalysts is an important topic[2] (Scheme 1). As the simplest
achiral NAD(P)H analogue, Hantzsch esters (HEH)[3] and
benzothiazolines[4] have been widely and successfully applied
in biomimetic asymmetric reduction of a series of unsaturated
compounds in the presence of chiral organocatalysts[5] and
metal catalysts.[6] However, these reactions required stoichio-
metric amounts of the NAD(P)H analogues and suffered
from intractable limitations in regeneration.[7] Recently,

a catalytic amount of achiral dihydrophenanthridine
(DHPD) was employed to realize biomimetic asymmetric
hydrogenation of imines and heteroaromatics with chiral
phosphoric acid, and is easy to regenerate under hydrogen gas
using either a homogeneous ruthenium[8] or iron catalyst.[9]

Despite this remarkable progress, the development of a chiral
and regenerable NAD(P)H analogues for BMAR is still
a long-standing challenge in biomimetic asymmetric catalysis.

For previous work on biomimetic asymmetric reduction
based on achiral NAD(P)H analogues, chiral Brønsted acids
are used as dominant transfer catalysts to control the
enantioselectivity. Owing to the inherent activation pattern
(protonation or hydrogen bonding) of chiral Brønsted acids,
its substrate scope is mostly confined to the asymmetric
reduction of C=N bonds. Obviously, increase in the diversity
of the activation pattern will further expand the generality of
biomimetic asymmetric reduction. For example, tetrasubsti-
tuted alkenes are challenging substrates in asymmetric
hydrogenation, especially in the biomimetic asymmetric
reductions (Scheme 2).[10] Owing to the inherent activation
pattern of Brønsted acids, not surprisingly, no desired

Scheme 1. Biomimetic asymmetric reduction (BMAR) based on the
coenzyme NAD(P)H.

Scheme 2. Initial results about the biomimetic reduction of tetrasub-
stituted alkenes. n.r. = no reaction.
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biomimetic reduction was observed using phosphoric acid as
a transfer catalyst in the presence of phenanthridine (PD).
Gratifyingly, the switch of transfer catalyst to the Lewis acid
Sm(OTf)3 delivered the desired product 2a in 42% yield.
Without the transfer catalyst, no reaction occurred. To further
increase the diversity of activation pattern, we envisioned that
the development of chiral and regenerable NAD(P)H model
might provide a general biomimetic asymmetric reduction
with other transfer catalysts (Scheme 1). Herein, we report
a biomimetic asymmetric reduction based on ferrocene-
derived chiral and regenerable NAD(P)H models with read-
ily available Lewis acids as achiral transfer catalysts, alongside
wide substrate scope, and excellent activities and enantiose-
lectivities.

Considering that dihydropyridine is the key structural
moiety for regeneration of NAD(P)H analogues under
hydrogen gas with ideal atom economy, we sought to explore
a chiral NAD(P)H analogue containing dihydropyridine
moiety. In addition, the chiral and regenerable NAD(P)H
analogue should be conveniently prepared from commer-
cially available materials and must be capable of being finely
tuned. Inspired by the application of planar chirality in
asymmetric synthesis,[11] we designed a chiral NAD(P)H
analogue (6) incorporating planar chirality and the phen-
anthridine structure (Scheme 3). Through three simple oper-
ations (reduction, Suzuki coupling, and oxidative cyclization),
a series of NAD(P)H analogues, FENAM (R)-6a–d, was
easily synthesized from the readily available chiral (S)-2-
iodoferrocenecarboxaldehyde (3 ; Scheme 3).[12]

To verify the efficiency of the planar-chiral NAD(P)H
analogues, the tetrasubstituted alkene 1a was chosen as
model substrate for biomimetic asymmetric reduction
(Table 1). Ruthenium(II) and acid were employed as the
regeneration and transfer catalyst, respectively. As with the
achiral NAD(P)H model phenanthridine (Scheme 2), the
Lewis acid displayed higher reactivity over Brønsted acid and
gave the desired product 2a in high enantioselectivity (87 %,
entries 1–3). A small amount of the side product 2a’’ was
detected and results from decarboxylation. According to
investigations on solvent effects, better reactivity but lower
selectivity was observed in THF (entries 2, 4–6). The evalua-
tion of the transfer catalyst suggests Yb(OTf)3 to be optimal

with regard to reactivity and enantioselectivity (entries 7–10).
No improvement of enantioselectivity was observed using
(R)-6b–d, having different steric and electronic properties
(entries 11–13). Excellent yield of isolated 2a was achieved by
prolonging the reaction time (97% yield; entry 14). Thus, the
optimal reaction conditions were identified as: alkenes
1 (1.0 equiv), [Ru(p-cymene)I2]2 (0.5 mol%), FENAM (R)-
6a (10 mol%), and achiral transfer catalyst Lewis acid
Yb(OTf)3 (20 mol %) under H2 (800 psi) in CHCl3 at 50 88C.

With optimal reaction conditions in hand, the substrate
scope of biomimetic asymmetric reduction of the tetrasub-
stituted alkenes 1 using a catalytic amount of (R)-6a was
explored (Scheme 4). It is noteworthy that the thermody-
namically preferred product, 3,4-trans-disubstituted dihydro-
coumarins, could be obtained for the aryl-substituted sub-
strates 1a–k in a highly diastereoselective manner (d.r.
> 20:1) with high enantioselectivities and activities (2a–
k).[13] The absolute configuration of 2e was assigned as
(3R,4R) by X-ray diffraction analysis (for details, see the
Supporting Information). As for the methyl-substituted sub-
strate, moderate diastereo- and enantioselectivity could be
obtained (2 l).

Because of the Lewis acidQs ability to activate imines, this
strategy might be suitable for biomimetic asymmetric reduc-
tion of C=N bonds. Substituted benzoxazinones (7) were
chosen as model substrates[14] to validate our hypothesis
(Scheme 5). Through optimization (see the Supporting Infor-
mation) of the reaction conditions, Sm(OTf)3 emerged as the
best transfer catalyst in terms of reactivity and enantioselec-
tivity. Generally, excellent yields (89–98%) and enantiose-
lectivities (92–98 %) were obtained in this biomimetic asym-
metric hydrogenation system regardless of the electronic

Scheme 3. Synthesis of the NAD(P)H analogues FENAM (R)-6 with
planar chirality.

Table 1: Optimization of reaction conditions.[a]

Entry Acid Slovent Model Conv. [%][b] 2a/2a’’[b] ee [%][c]

1 (PhO)2PO2H CHCl3 (R)-6a <5 – –
2 Sm(OTf)3 CHCl3 (R)-6a 11 10:1 87
3 – CHCl3 (R)-6a <5 – –
4 Sm(OTf)3 CH2Cl2 (R)-6a 11 4.5:1 85
5 Sm(OTf)3 toluene (R)-6a 31 5.2:1 86
6 Sm(OTf)3 THF (R)-6a >95 4.5:1 83
7 Cu(OTf)2 CHCl3 (R)-6a <5 – –
8 La(OTf)3 CHCl3 (R)-6a 41 >20:1 92
9 Sc(OTf)3 CHCl3 (R)-6a <5 – –
10 Yb(OTf)3 CHCl3 (R)-6a 88 >20:1 90
11 Yb(OTf)3 CHCl3 (R)-6b 80 >20:1 89
12 Yb(OTf)3 CHCl3 (R)-6c 63 >20:1 87
13 Yb(OTf)3 CHCl3 (R)-6d 17 >20:1 89
14 Yb(OTf)3 CHCl3 (R)-6a 97[d] >20:1 90

[a] Reactions were carried out with 1a (0.10 mmol), [Ru(p-cymene)I2]2
(0.5 mol%), 6 (10 mol%), acid (20 mol%), and solvent (2 mL) under H2

(800 psi) at 50 88C for 23 h. [b] Conversion and selectivity were measured
by analysis of the 1H NMR spectra. [c] Determined by chiral-phase HPLC.
[d] Yield of isolated product for the reaction run on a 0.15 mmol scale for
80 h.
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properties of the substituent on 7 (7a–k). As for the alkyl-
substituted substrate, moderate yield and high enantioselec-
tivity (96 %) could be obtained (8 l).

Configuration stability of (R)-6 a was obtained by heating
it in THF (at 60 88C), ClCH2CH2Cl (at 80 88C), and toluene (at
100 88C) for 4 hours, respectively, and the HPLC analysis
showed the ee values were retained.[15] Thus, the planar-chiral
NAD(P)H analogue could have potential applications under
harsh reaction conditions. Furthermore, the enantioselectivity
of the product was proportional to the enantiomeric excess of
(R)-6a (Scheme 6). The observed linear dependence indicates

that only a monomeric chiral catalyst, rather than an
aggregate of two or more catalysts, is catalyzing the reaction.

Based on the experimental results and the putative
mechanism of NAD(P)H-analogue-promoted biomimetic
asymmetric reduction,[8a] a plausible mechanism for our
biomimetic asymmetric reduction of C=N and C=C unsatu-
rated bonds is illustrated (Scheme 7). Just like the NAD(P)H-

mediated reduction, this catalytic biomimetic asymmetric
reduction comprises two cascade redox cycles promoted by
two achiral catalysts. For the Lewis acid catalyzed reaction,
coordination for activation plays a major role in the biomim-
etic asymmetric reduction process.

In summary, through rational design of chiral regenerable
NAD(P)H analogues based on planar-chiral ferrocene, we
have successfully developed a new biomimetic asymmetric
reduction with hydrogen gas as the terminal reductant. Using
either the readily available and bench-stable achiral Lewis
acid ytterbium or samarium triflate as the transfer catalyst,
the substrate scope was significantly extended. A broad set of

Scheme 4. Substrate scope for Lewis acid promoted BMAR of tetra-
substituted alkenes.

Scheme 5. Substrate scope for Lewis acid promoted BMAR of benzox-
azinones.

Scheme 6. Dependence of enantioselectivity of the product 8a on the
ee value of (R)-6a.

Scheme 7. Proposed mechanism and transition state. For the X-ray
structure the thermal ellipsoids are shown at 50% probability.
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electron-deficient tetrasubstituted alkenes and imines could
be reduced with up to 98 % yield and 98% ee. It is worth
mentioning that this is the first successful chiral and regen-
erable NAD(P)H analogue enabling a general biomimetic
asymmetric reduction. From the point of view of organic
synthesis, the above biomimetic reactions provide direct
access to a variety of chiral amines and dihydrocoumarins
which are prevalent in natural products, synthetic intermedi-
ates, and pharmaceuticals. We anticipate that this concept will
open a new horizon for the development of asymmetric
biomimetic chemistry of coenzyme NAD(P)H in other fields.
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