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Catalytic in Phosphine 

Entry [P] x Silane y Yield (%) 

1 TPP 110 none 84 

2 TPP 110 PhSiH3 1.1 77 

3 1 10 PHMS 1.5 0 

4 1 10 Ph3SiH 2.0 0 

5 1 10 Ph2SiH2 1.1 42 

6 1 10 PhSiH3 1.1 63 

7 2 10 PhSiH3 1.1 77 

8 2 5 PhSiH3 1.1 77 

9 2 2 PhSiH3 1.1 58 

10 2 1  PhSiH3 1.1 54 
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Fully Catalytic System 

Entry R [P] MS [Å] Atmosphere Yield (%) 

1 OMe 1 4 air 15 

2 OMe 1 5 air 19 

3 OMe 1 5 O2 enriched 35 

4 OMe 2 5 air 35 

5 OMe 2 5 O2 enriched 63 

6 H 2 5 O2 enriched 68 
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Entry Solvent x Concentration (M) t (h) Yield (%) Ee (%) 

1 toluene 10 0.08 72 56 98 

2 toluene 10 0.16 72 54 96 

3 toluene 10 0.40 96 72 89 

4 toluene 25 0.08 96 75 96 

5 toluene 25 0.16 72 77 90 

6 xylenes 10 0.08 30 84 98 

7 xylenes 10 0.16 24 74 96 

8 xylenes 10 0.40 24 65 91 

9 xylenes 25 0.16 20 76 97 
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  Alcohols are important feedstocks for chemical synthesis because 

they are abundant and inexpensive and can be converted into a wide 

range of additional functional groups by using, among others, 

nucleophilic substitution reactions. The ideal (hypothetical) 

nucleophilic substitution would involve direct stereospecific 

displacement of the hydroxyl group with concomitant elimination of 

water. In practice, kinetic and thermodynamic barriers prevent direct 

substitution, and therefore, additional chemical activating agents 

must be used. However, conventional methods, such as the 

Mitsunobu protocol, involve hazardous stoichiometric reagents that 

are incongruous with the principle of atom economy. Nevertheless, 

this method is used very frequently and remains the state of the art in 

terms of stereospecific nucleophilic substitution.  
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  Therefore, it is clear that alternative catalytic substitution reactions 

would have a major impact on chemical synthesis and eventually 

replace the inherently inefficient current methods. To date, a variety of 

strategies have been devised to enable catalytic coupling of p-

activated alcohols and nucleophiles, which include Brønsted or Lewis 

acid catalysis and transition metal-catalyzed. In many cases, these 

reactions occur through stabilized carbocation intermediates and, 

necessarily, generate racemic products. However, there are notable 

examples in which excellent stereoselectivity has been achieved. A 

conceptually different approach to catalytic nucleophilic substitution 

termed “borrowing hydrogen” involves oxidation of the alcohol, 

condensation with a nucleophile, and then reduction to achieve the 

product of a direct substitution reaction.  
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  Despite these advances, the development of catalytic methods that 

enable stereospecific bimolecular substitution of nonactivated chiral 

alcohols remains a major challenge. Although some progress has 

been made by using cyclopropenone catalysis, most effort to date 

has been focused on modifying the original Mitsunobu protocol by 

redox recycling of the stoichiometric reagents. Although this approach 

is intuitive, implementation is challenging because recycling the 

phosphine reagent requires a stoichiometric reductant and recycling 

the azo oxidant requires a mutually compatible stoichiometric oxidant. 
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  The elimination of redox chemistry in our catalytic Mitsunobu 

protocol obviates the need for terminal oxidants and reductants and 

results in substantially increased reaction mass efficiency of 65%. 

The established organophosphorus-catalyzed dehydration manifold 

has potential applications in a range of other classical phosphorus-

mediated transformations. 
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Alcohols are important feedstocks for chemical synthesis because 

they are abundant and inexpensive and can be converted into a wide 

range of additional functional groups by using, among others, 

nucleophilic substitution reactions. 

However, conventional methods, such as the Mitsunobu protocol, 

involve hazardous stoichiometric reagents that are incongruous with 

the principle of atom economy. 

To date, a variety of strategies have been devised to enable catalytic 

coupling of p-activated alcohols and nucleophiles. 

Conscious of these limitations, we questioned whether an alternative 

catalysis manifold could be developed in which the oxidation state of 

phosphorus was invariant. 

Furthermore, if this catalytic dehydration system could be validated, it 

would expand the field of phosphorus-based organocatalysis. 
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A hallmark of the Mitsunobu reaction is secondary alcohol inversion.  

We next sought to extend the method to encompass carbon-nitrogen 

and carbon-sulfur bond formations. 

To assess the catalytic dehydration platform depicted in Fig. 1D, we 

carried out mechanistic studies beginning with an isotope labeling 

experiment. 

In summary, the experiments described above and in the 

supplementary material are congruous with the catalytic cycle 

depicted in Fig. 1D. 

The labeling study and stereochemical inversion are consistent with 

the carbon-nucleophile bond formation. 
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