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Enantioselective synthesis of trifluoromethyl
substituted piperidines with multiple stereogenic
centers via hydrogenation of pyridinium
hydrochlorides†

Mu-Wang Chen, Zhi-Shi Ye, Zhang-Pei Chen, Bo Wu and Yong-Gui Zhou*

An enantioselective iridium-catalyzed hydrogenation of trifluoromethyl substituted pyridinium hydro-

chlorides is described. Introduction of a trifluoromethyl group increases the reactivity due to the

electron-withdrawing effect. Three stereogenic centers could be generated in one operation. This meth-

odology provides a convenient route to chiral poly-substituted piperidines with up to 90% ee.

Chiral piperidines are valuable and prevalent substructures in
biologically active natural products, synthetic bioactive com-
pounds and medicines.1 In particular, the introduction of novel
substituents on these framed syntheses of multiple stereocenter
piperidines has been the focus of many chemists.2 Among
them, selective introduction of trifluoromethyl groups can
greatly modify the biological properties of the target molecules
which are broadly present in several important drugs, such as
JAK inhibitors (Fig. 1).3 Although organofluorine chemists have
made tireless efforts, stereoselective synthesis of trifluoromethyl
piperidines with multiple stereogenic centers is still an area
which has been rarely explored to date.4

Piperidines with multiple stereogenic centers are of great
significance; together with our ongoing efforts in the develop-
ment of asymmetric hydrogenation of N-heteroaromatics, we
envision that asymmetric hydrogenation of such poly-substi-
tuted trifluoromethyl pyridines would provide straightforward

access to these compounds. However, due to the stabilizing
aromaticity5 and strong coordination ability of pyridines and
the corresponding products, which might poison catalysts, in
the past 15 years only a few homogeneous Rh and Ir catalysts6

and organocatalysts7 have been applied to synthesize chiral
piperidines through asymmetric hydrogenation of special pyri-
dines bearing strong electron-withdrawing groups or pyridi-
nium salts (eqn (1) and (2)). Notably, very recently, Mashima
and co-workers reported an iridium-catalyzed asymmetric
hydrogenation of pyridinium salts,6i giving the chiral piper-
idines with two or three stereogenic centers in 28–82% ee and
moderate yields (eqn (3)). Herein, we report an efficient asym-
metric hydrogenation of poly-substituted pyridinium salts with
excellent enantio- and diastereoselectivity (eqn (4)). Notably,
introduction of the trifluoromethyl group increases the reactiv-

Fig. 1 Selected biologically active molecules containing the trifluoro-
methylpiperidine motif.
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ity due to the electron-withdrawing effect. Three stereogenic
centers could be generated in one operation.

On the basis that the extraneous Brønsted acid could acti-
vate substrates and accelerate iminium/enamine isomerization
to facilitate hydrogenation,8 we tried asymmetric hydrogen-
ation of pyridinium hydrochloride. To our delight, 6-methyl-2-
phenyl-3-trifluoromethylpyridinium hydrochloride (1a·HCl)
could be hydrogenated in full conversion with 67% ee and
excellent diastereoselectivity (Table 1, entry 1). Subsequently,
different solvents were examined (entries 2–7) and the mixture
solvents of dichloromethane (DCM) and isopropanol with a
ratio of 3/1 gave the best result in terms of both enantio-
selectivity and conversion (85% ee and >95% conversion; entry
6). Sequentially, various halogen source additives (TCCA:
trichloroisocyanuric acid, DCDMH: 1,3-dichloro-5,5-dimethyl-
hydantoin and DBDMH: 1,3-dibromo-5,5-dimethylhydantoin)
were tested, and gave similar ee values between 81 and 85%
(entries 8–10). Some commercially available chiral bisphos-
phine ligands were also evaluated (entries 11–13), and the best
result was achieved with (R)-DifluorPhos L3 (88% ee and >95%
conversion; entry 12). Finally, 90% ee was achieved when the
temperature was decreased to 25 °C, but the conversion
reduced to 85%. Gratifyingly, full conversion with an identical
enantioselectivity was obtained (entry 15, 90% ee) when the

hydrogen pressure was raised to 800 psi with 2.5 mol% cata-
lyst. Thus, the optimized conditions were established as: [Ir
(COD)Cl]2/(R)-DifluorPhos/TCCA/(DCM/i-PrOH)/H2 (800 psi)/
25 °C.

With the optimized reaction conditions in hand, explora-
tion of the substrate scope was carried out (Table 2). As
expected, various substrates performed very well under stan-
dard reaction conditions. The electronic properties and posi-
tion of substituents on the aromatic ring had a marginal effect
on the reactivity and enantioselectivity (entries 1–8). Sub-
sequently, the 6-ethyl-2-phenyl-3-(trifluoromethyl)pyridinium
hydrochloride (1i·HCl) was also tested, 87% ee and 82% yield
were obtained (entry 9). The absolute configuration of hydro-
genation product 2f was assigned to be cis-(2R,3S,6R) based on
single crystal X-ray diffraction analysis (Fig. 2).9

In order to further estimate the application possibility, we
applied this attractive protocol to the hydrogenation of the
simple 2,6-disubstituted pyridinium hydrochloride. Gratify-
ingly, the reaction proceeded with moderate enantioselectivity
and moderate to good reactivity (Scheme 1). In contrast to the
asymmetric reduction of 3-(trifluoromethyl)pyridinium hydro-
chloride 1, in these cases the reactions were carried out under

Table 1 The evaluation of reaction parametersa

Entry Solvent Additive L Conv.b (%) eec (%)

1 THF TCCA L1 >95 67
2 DCM (D) TCCA L1 91 82
3 Benzene TCCA L1 89 79
4 i-PrOH(P) TCCA L1 97 79
5 D/P (1 : 1) TCCA L1 >95 82
6 D/P (3 : 1) TCCA L1 >95 85
7 D/P (4 : 1) TCCA L1 >95 83
8 D/P (3 : 1) DCDMH L1 >95 83
9 D/P (3 : 1) DBDMH L1 >95 81
10 D/P (3 : 1) NCS L1 >95 82
11 D/P (3 : 1) TCCA L2 96 78
12 D/P (3 : 1) TCCA L3 >95 88
13 D/P (3 : 1) TCCA L4 >95 79
14d D/P (3 : 1) TCCA L3 85 90
15e D/P (3 : 1) TCCA L3 >95 90

a Reaction conditions: 1a·HCl (0.125 mmol), [Ir(COD)Cl]2 (2.0 mol%),
ligand (4.4 mol%), H2 (600 psi), solvent (3.0 mL), additive (10 mol%),
36 h, 50 °C. b Reaction conversion and dr were determined by 1H NMR
spectroscopy. In all cases, dr >20 : 1. cDetermined by HPLC analysis of
the corresponding N-benzoyl derivatives. d 25 °C. e [Ir(COD)Cl]2
(2.5 mol%), (R)-DifluorPhos (5.5 mol%), H2 (800 psi), 25 °C.

Table 2 Asymmetric hydrogenation of 3-(trifluoromethyl)pyridinium
hydrochloride (1·HCl)a

Entry R/Ar Yieldb (%) eec (%)

1 Me/C6H5 95 (2a) 90
2 Me/4-MeC6H4 84 (2b) 89
3 Me/3-MeC6H4 84 (2c) 88
4 Me/4-MeOC6H4 94 (2b) 88
5 Me/2-Naphthyl 93 (2e) 89
6d Me/4-C6H5C6H4 90 (2f) 87 (2R,3S,6R)
7 Me/4-CF3C6H4 85 (2g) 86
8 Me/3,5-F2C6H3 72 (2h) 84
9 Et/C6H5 82 (2i) 87

a Reaction conditions: 1·HCl (0.125 mmol), (R)-DifluorPhos (5.5 mol
%), [Ir(COD)Cl]2 (2.5 mol%), H2 (800 psi), DCM–i-PrOH (3 : 1, 3.0 mL),
TCCA (10 mol%), 36 h, 25 °C. b Isolated yields and in all cases dr
>20 : 1. cDetermined by HPLC analysis of the corresponding
benzamide. d The absolute configuration was determined by single
crystal X-ray diffraction analysis of 2f.

Fig. 2 X-ray crystal structure of compound 2f.
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relatively harsh conditions (1200 psi hydrogen pressure and
80 °C). The reactivity discrepancy of these two types of sub-
strates might be ascribed to the electron-withdrawing ability of
the trifluoromethyl group that activates pyridine to facilitate
hydrogenation.

In conclusion, an efficient and direct approach to chiral tri-
fluoromethyl substituted piperidines with multiple stereogenic
centers has been successfully developed via iridium-catalyzed
asymmetric hydrogenation of the corresponding pyridinium
hydrochlorides with up to 90% ee. Three stereogenic centers
could be generated in one operation. Introduction of the tri-
fluoromethyl group increases the reactivity of pyridine hydro-
genation due to the strong electron-withdrawing effect.
Meanwhile, this attractive protocol can also be applied to the
asymmetric hydrogenation of the simple 2,6-disubstituted pyri-
dinium hydrochlorides with moderate reactivity and enantio-
selectivity. Further investigations on asymmetric
hydrogenation of poly-substituted heteroaromatics are cur-
rently ongoing in our laboratory.

Experimental section
Typical procedure for asymmetric hydrogenation of 1a

In a nitrogen-filled glove box, a mixture of [Ir(COD)Cl]2
(2.1 mg, 0.0031 mmol) and (R)-DifluorPhos (4.7 mg,
0.0069 mmol) in dichloromethane–isopropanol (3 : 1, 1.0 mL)
was stirred at room temperature for 15–20 min, using a syringe
the mixture was transferred to a stainless steel autoclave, in
which the substrate 1a·HCl (34.0 mg, 0.20 mmol) and TCCA
(2.9 mg, 0.0125 mmol) had been placed beforehand. Then,
dichloromethane–isopropanol (3 : 1, 2.0 mL) was added. The
hydrogenation was performed at 25 °C under 800 psi hydrogen
pressure for 36 h. After carefully releasing the hydrogen, tri-
ethylamine (56 µL, 0.40 mmol) was added and the mixture was

stirred for 30 min. The organic layer was separated and
extracted with dichloromethane twice, and the combined
organic extracts were dried over sodium sulfate and concen-
trated in vacuo. The resulting residue was purified by silica gel
column chromatography using petroleum ether–ethyl acetate
to give the desired product 2a as pale oil (29 mg, 95% yield).
Enantiomeric excess was determined by HPLC for the corres-
ponding benzamide (OJ–H, elute: hexanes–i-PrOH = 90/10,
detector: 220 nm, flow rate: 1.0 mL min−1), 30 °C, t1 =
10.6 min (maj), t2 = 15.3 min (90% ee).
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