© Cite This: J. Am. Chem. Soc. 2018, 140, 6039-6043

Enantioselective Halo-oxy- and Halo-azacyclizations Induced by Chiral Amidophosphate Catalysts and Halo-Lewis Acids

Yanhui Lu, ${ }^{\dagger}$ Hidefumi Nakatsuji, ${ }^{\dagger, \ddagger}$ Yukimasa Okumura, Lu Yao, and Kazuaki Ishihara*©
Graduate School of Engineering, Nagoya University, B2-3(611), Furo-cho, Chikusa, Nagoya 464-8603, Japan

S Supporting Information

Abstract

Catalytic enantioselective halocyclization of 2-alkenylphenols and enamides have been achieved through the use of chiral amidophosphate catalysts and halo-Lewis acids. Density functional theory calculations suggested that the Lewis basicity of the catalyst played an important role in the reactivity and enantioselectivity. The resulting chiral halogenated chromans can be transformed to α-Tocopherol, α-Tocotrienol, Daedalin A and Englitazone in short steps. Furthermore, a halogenated product with an unsaturated side chain may provide polycyclic adducts under radical cyclization conditions.

Biologically active compounds with a chiral chroman skeleton are abundant in nature and synthetic analogues (Figure 1a). ${ }^{1}$ In addition to the well-known Vitamin E family $\left(1,{ }^{2} 2^{3}\right)$, small synthetic chiral chromans have also been shown to be effective against hyperpigmentation $\left(3^{4}\right)$, metabolic disorders $\left(4,{ }^{5} 5^{6}\right)$ and cancers (6^{7}). Asymmetric catalysis has recently emerged as a powerful method for building the chiral chroman skeleton. ${ }^{8}$ In constructing chiral chromans, it is

Figure 1. (a) Natural products or synthetic analogues containing chiral chromans. (b) Strategies for constructing chiral chromans through enantioselective halo-oxycyclization using chiral Lewis base catalysts and halo-Lewis acids.
important to control the stereoselectivity at position 2 . We proposed that enantioselective halocyclizations of certain 2alkenylphenols 7 could deliver chiral centers at position 2 (Figure 1b). Enantioselective alkene halogenation has been a subject of intense investigation over the past decade. ${ }^{9-13}$ Although enantioselective halolactonizations have been welldocumented, enantioselective cyclizations of 7 are still limited to some polyene systems. ${ }^{101, m}$ One major issue in the development of catalytic asymmetric alkene halogenations is the rapid racemization of chiral haliranium ions through olefin-to-olefin haliranium transfer. ${ }^{14}$ Chiral nucleophilic basecatalyzed halofunctionalizations have been shown to be effective over the past decade because of the coordination effect. ${ }^{15}$ However, there are important differences between iodonium and bromonium ions: (1) The ionic radius of iodonium ion is much longer than that of bromonium ion; ${ }^{16}$ (2) Iodonium ion forms a stronger halogen bond with Lewis bases; ${ }^{17}$ (3) While both iodonium and bromonium ions can form haliranium ions with alkenes, their stabilities and reactivities are quite different, ${ }^{18}$ and thus the same nucleophilic catalysts do not work equally well in different halogenations. ${ }^{9 \mathrm{~b}, 10 \mathrm{j}, \mathrm{n}, 11 \mathrm{a}, \mathrm{b}}$ We have previously reported the cooperative activation system of I_{2} using chiral phosphate catalysts and halo-Lewis acids for the enantioselective iodolactonization. ${ }^{9 f}$ However, the substrate scope is limited to 4 -arylmethyl-4pentenoic acids. Here, we describe an efficient, enantioselective, and site-selective (in the presence of multiple olefins) iodo- and bromocycloetherification of 7 to construct chiral chromans using chiral Lewis basic amidophosphate catalysts $9\left(\mathrm{Lb}^{*}\right)$ and halo-Lewis acids (X-L). Moreover, the broad applicability of this catalytic system for not only halo-oxycyclization but also halo-azacyclization is demonstrated.

We initiated enantioselective halo-oxycyclization of 2alkenylphenol 7a. For the iodo-oxycyclization, I_{2} was used as the iodine source in the presence of BINOL-derived phosphoric acid derivative 9 as a catalyst and Lewis acidic N chlorosuccinimide (NCS). ${ }^{19}$ For the bromo-oxycyclization, 1,3-dibromo-5,5-dimethylhydantoin (DBH) was used as the Lewis acidic bromine source in the absence of any other halo-Lewis acidic additives because of high reactivity of DBH (Table 1). The previous chiral phosphate triester catalyst 9a promoted iodocyclization in 85% ee (entry 1). ${ }^{9 f}$ On the other hand, the electron-donating substituents of triesters $\mathbf{9 b}$ and $9 \mathbf{c}$ contributed to increase the ee values (entries 2 and 3). Interestingly, the amidophosphate 9d catalyzed the iodocycliza-

Received: March 7, 2018
Published: April 30, 2018

Table 1. Halocycloetherification of 2-Alkenylphenol 7a Catalyzed by Nucleophilic Phosphoric Acid Derivatives ${ }^{a}$

		yield (\%	$(\%)^{e}$
entry	cat. 9 [$\mathrm{P}(=\mathrm{Z}) \mathrm{YR}]$	8a-I ${ }^{\text {b }}$	$8 \mathrm{a}-\mathrm{Br}^{\text {c }}$
1	9a [P(=O) $\left.\mathrm{OC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Me}_{2}\right]$	85, 85	80, 71
2	9b $\left[\mathrm{P}(=\mathrm{O}) \mathrm{OC}_{6} \mathrm{H}_{2}-2,4,6-\mathrm{Me}_{3}\right]$	85, 89	77, 81
3	9c [P(=O) $\left.\mathrm{OC}_{6} \mathrm{H}_{2}-4-\mathrm{MeO}-2,6-\mathrm{Me}_{2}\right]$	95, 92	66, 82
4	9d [$\left.\mathrm{P}(=\mathrm{O}) \mathrm{NHC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Me}_{2}\right]$	99, 97	90, 85
5	9e[$\left.\mathrm{P}(=\mathrm{O}) \mathrm{NHC}_{6} \mathrm{H}_{2}-4-t-\mathrm{Bu}-2,6-\mathrm{Me}_{2}\right]$	98, 96	93, 94
6	9f [$\left.\mathrm{P}(=\mathrm{O}) \mathrm{NHC}_{6} \mathrm{H}_{3}-2,6-i-\mathrm{Pr}_{2}\right]$	84, 89	44, 58
7	9g [$\left.\mathrm{P}(=\mathrm{S}) \mathrm{NHC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Me}_{2}\right]$	27, 13	15, 4
8	9h [$\left.\mathrm{P}(=\mathrm{Se}) \mathrm{NHC}_{6} \mathrm{H}_{3}-2,6-\mathrm{Me}_{2}\right]$	54, 33	26, 7
9	9i [$\mathrm{P}(=\mathrm{O}) \mathrm{NHTf}]$	99, 9	90, 14
10	9j [$\mathrm{P}(=\mathrm{S}$) NHTf$]$	87, 17	10, 25

${ }^{a}$ Reactions were carried out with $7 \mathrm{a}(0.10 \mathrm{mmol}), 9(0.0050 \mathrm{mmol})$, and X^{+}reagent $(0.11 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. ${ }^{b}$ A mixture of $\mathrm{I}_{2}(0.11 \mathrm{mmol})$ and NCS $(0.11 \mathrm{mmol})$ was used as I^{+}reagent. ${ }^{c} \mathrm{DBH}(0.11 \mathrm{mmol})$ was used as Br^{+}reagent. ${ }^{d}$ Isolated yield. ${ }^{e}$ Ee values were determined by HPLC analysis.
tion more efficiently than triesters $9 \mathbf{a}-\mathbf{c}$ to provide chroman 8a-I with 97% ee (entry 4). DFT calculations suggested that amidophosphates are more electron-rich than phosphate triesters, and electron-donating substituents increased the electron density. The stronger Lewis base catalyst 9 should form a more stable intermediate 10 that may help to suppress olefin-to-olefin racemization. Moreover, the $\mathrm{N}-\mathrm{H}$ protons in amidophosphates were found to be relatively electron-poor. ${ }^{20}$ Other approaches, including converting the amine moieties to more bulky ($9 \mathbf{f}$) or smaller ($9 \mathbf{i}$) substituents, as well as changing the $\mathrm{P}=\mathrm{O}$ to $\mathrm{P}=\mathrm{S}(\mathbf{9 g}, \mathbf{9 j})$ or $\mathrm{P}=\mathrm{Se}(\mathbf{9 h})$ gave lower yields and ee values. As in iodocyclization, chiral amidophosphate catalyst was more efficient in enantioselective bromocyclizations. However, the best catalyst 9d for iodocyclization did not provide the desired ee in bromocyclization. Surprisingly, the introduction of a bulky group at the para-position of the N phenyl moiety in 9d, dramatically increased the ee (entry 5).

Based on the X-ray diffraction analysis of 9 d and the absolute configuration of $\mathbf{8}-\mathbf{X},{ }^{21}$ it was assumed that the addition of iodonium ion preferentially occurred on the si-face of 7 a to avoid steric repulsion between $7 \mathbf{a}$ and 9d, as shown in Figure 2. On the other hand, the addition of iodonium ion on the re-face

Figure 2. Proposed stereoselective process for halocyclizations using 9d based on its crystal structure.
of 7a was sterically disfavored. Although the para-substituent effect of the N-phenyl moiety of $9 \mathbf{e}$ for enantioselective bromocyclization is not clear, the bulkiness and electrondonating ability might stabilize the transition state close to that shown in Figure 2.

BINOL-derived amidophosphates are easily modifiable by replacing the $3,3^{\prime}$-substituents and amino moieties. Through the optimization of catalysts, we found that this system was suitable for both halo-O-cyclization and halo- N -cyclization. Representative examples are listed in Tables 2 and 3. Generally,

Table 2. Asymmetric Halocyclization of 2-Alkenylphenols and Unsaturated Amides 7^{a}

${ }^{a}$ Unless otherwise stated, reactions were carried out with substrate 7 $(0.10 \mathrm{mmol})$ and $9(0.0050 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}) .{ }^{b}$ Isolated yield. ${ }^{c}$ Ee values were determined by HPLC analysis. ${ }^{d} 0.50 \mathrm{~mol} \%$ of 9 d was used. ${ }^{e}$ NIS was used in place of NCS. ${ }^{f}$ DBH was used. ${ }^{g}$ NBS was used.

excellent yields (89-99\%) and enantioselectivities (91-98\% ee) were observed for iodocycloetherification of 2-alkenylphenols with alkyl side chains that varied from methyl to cyclohexyl groups (Table 2, $7 \mathbf{a}-\mathbf{f}$) in the presence of catalyst $9 \mathbf{d}^{22}$ In particular, chiral chroman $8 \mathrm{a}-\mathrm{I}$ was obtained on a $10-\mathrm{g}$ scale in the presence of only $0.50 \mathrm{~mol} \%$ of 9 d . Moreover, $8 \mathbf{d}-\mathrm{I}$ was obtained as a single product, and exhibited excellent chemoselectivity for terminal over internal olefins. The parasubstituted phenols $7 \mathrm{~g}-7 \mathbf{i}$ were also suitable for use in this reaction. However, when $7 \mathbf{j}\left(\mathrm{R}^{1}=H\right)$ was used as a substrate, the reactivity dropped (the reaction occurred only at

Table 3. Asymmetric Halocycloetherification of 11

${ }^{a}$ Unless otherwise stated, reactions were carried out with substrate 7 $(0.10 \mathrm{mmol})$ and $9(0.0050 \mathrm{mmol})$ in toluene $(1 \mathrm{~mL}) .{ }^{b}$ Isolated yield. ${ }^{c}$ Ee values were determined by HPLC analysis. ${ }^{d}$ NIS was used in place of NCS. ${ }^{e}$ DBH was used in place of NCS. ${ }^{f}$ NBS was used in place of NCS.
temperatures higher than $-60^{\circ} \mathrm{C}$), and catalyst $9 \mathbf{e}$ was effective for achieving high enantioselectivity. As stated in Table 1, 9e was effective for bromocyclization to give chiral chromans 8a$\mathbf{B r}, \mathbf{8 i}-\mathbf{B r}$, and $\mathbf{8 b}-\mathbf{B r}$ in high yields and ee values. On the other hand, for the enantioselective iodocyclization of sterically bulky 2-alkenylphenol $7 \mathbf{k}, 3,3^{\prime}-\mathrm{di}(9$-anthryl)BINOL-derived catalyst $9 \mathbf{k}$ was effective. Interestingly, the inverted asymmetric induction was observed due to the steric bulkiness of $7 \mathbf{k}^{21}$

Furthermore, catalyst $9 \mathbf{k}$ worked very well in the iodocyclization of unsaturated amides $7 \mathbf{l}-7 \mathbf{p}$ to give enantioenriched pyrrolidines $\mathbf{8 1}-\mathbf{I}-\mathbf{8 p}$-I in high yields and enantioselectivities. ${ }^{22}$ Both alkyl and aryl side chains were acceptable. ${ }^{9 \mathrm{~h}, 10 \mathrm{~b}}$ Although both Ts and Ns protective groups were useful in the iodocyclization, the more electron-deficient Ns group was necessary for the high enantioselectivity in bromocyclization to $8 \mathbf{p}-\mathbf{B r} .^{10 \mathrm{~b}}$ Moreover, catalyst 9 k was modified to 91, which possesses a 10 -aryl-substituent on the 9 -anthryl group for bromocyclization. We proposed that steric repulsion between the 10 -aryl group and the amine moiety might change the angles of 3,3 -substituents, which would increase the steric effect around the phosphine oxide.

Table 3 presents the scope of internal olefins 11 that undergo endo-cyclization to give chiral halogenated chromans 12-X. Catalysts $9 \mathbf{k}$ and 91 were effective for the iodo- and bromocyclization of 2-(3, 3^{\prime}-dialkylallyl)phenols 11, respectively. ${ }^{22}$ Neither electron-deficient nor electron-rich substituents at the para- or meta-positions on the hydroxyphenyl group of 11 influenced the high enantioselectivities (12a-X-12d$\mathbf{X}){ }^{21}$ In the case of polyenylphenols such as 11e and 11f, the carbon-carbon double bond closest to phenols selectively reacted to give chiral chromans with unsaturated side chains in good yields and enantioselectivities. However, iodocyclization
did not proceed for 2-(3-arylallyl)phenols $\mathbf{1 1 g}-\mathbf{1 1 k}$ under the same conditions as in Table 2. When a bromo-Lewis acid such as DBH or NBS was used in place of NCS, desired chiral chromans $\mathbf{1 2 g}$-I-12k-I were obtained in high yields with high enantio- and anti-selectivities. Interestingly, asymmetric induction in the cyclization of $11 \mathrm{~g}-11 \mathrm{k}$ was opposite to that of 11a-11f. ${ }^{21}$

On the basis of the results of an NMR study, we confirmed that IBr and NIS were generated from the mixture of molecular iodine and NBS at ambient temperature. ${ }^{23}$ Indeed, 0.2 equiv of IBr and 1.1 equiv of NIS with catalyst $9 \mathrm{f}(5 \mathrm{~mol} \%)$ efficiently promoted the iodocyclization of 11 g in high yield with high enantioselectivity. ${ }^{24}$ These results suggest that a highly reactive species 14 was generated from $9 \mathrm{f}, \mathrm{IBr}$ and NIS (Scheme 1).

Scheme 1. Proposed New Active Species 14 from 13

First, the dual activation of I_{2} with 9 f and NBS/DBH or the dual activation of in situ-generated IBr with 9 f and NIS provided iodonium species $13,{ }^{23,24}$ which has been previously reported. ${ }^{9 f}$ However, 13 would be immediately transformed to species 14 because the succinimide anion preferred to react with IBr to give NIS. Thus, the enantioselective iodocyclization of $\mathbf{1 1 g}$ proceeded via species 14 , which was more electrophilic than $13 .{ }^{25}$

Halogenated chiral chromans and halopyrrolidines are useful building blocks and synthetic intermediates (Scheme 2).

Scheme 2. Synthetic Transformation of Optically Active Halocyclic Products

Compound 8h-I could be transformed to Daedalin A 3 through a 3 -step process. Key intermediates in the synthesis of Vitamin E ($\mathbf{1}^{26}$ and $\mathbf{2}^{27}$) and Englitazone 4^{28} could be obtained from $\mathbf{8 k}$-I and $\mathbf{8 j - I}$. In addition, a bicyclic adduct 15 was obtained from 8a-I through DDQ oxidation. In particular, 12f-I underwent radical cyclization to give a tricyclic adduct 16 with high diastereoselectivity. Although further improvement of the
enantioselectivity is needed, we postulate that this method is an efficient alternative approach for obtaining polycyclic compounds. Finally, halopyrrolidine $\mathbf{8 n}$-I could be transformed to chiral aziridine 17 through a known method. ${ }^{10 \mathrm{~b}}$

In conclusion, we have developed an efficient enantioselective iodo- and bromocyclization for the construction of chiral chromans and pyrrolidines using chiral amidophosphate catalysts based on the same strategy. Several natural products and key synthetic intermediates could be obtained through the easy transformation of halocyclic products. Experimental results and DFT calculations suggested that the nucleophilicity of the catalysts plays an important role in the enantioselectivity. On the basis of the results of NMR studies and control experiments, we proposed a new highly reactive species from catalyst, I_{2} and NBS. Apparently, a deeper chiral cavity around the halonium ion is required to induce high enantioselectivity in bromocyclization compared to iodocyclization. Further studies will be needed to fully elucidate the reaction mechanism.

- ASSOCIATED CONTENT

(5) Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b02607.

Experimental procedures, spectroscopic data (PDF)
Data for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{IO}_{2}$ (CIF)
Data for $\mathrm{C}_{64} \mathrm{H}_{50} \mathrm{NO}_{3} \mathrm{PSi}_{2}$ (CIF)
Data for $\mathrm{C}_{64} \mathrm{H}_{50} \mathrm{I}_{2} \mathrm{NO}_{3} \mathrm{PSi}_{2}$ (CIF)
Data for $\mathrm{C}_{74} \mathrm{H}_{64} \mathrm{NO}_{3} \mathrm{PSi}_{2}$ (CIF)
Data for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClIO}$ (CIF)
Data for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{I}_{3} \mathrm{PS}$ (CIF)
Data for $\mathrm{C}_{18} \mathrm{H}_{15}$ BrIPS (CIF)

AUTHOR INFORMATION

Corresponding Author

*ishihara@cc.nagoya-u.ac.jp
ORCID ${ }^{\circ}$
Kazuaki Ishihara: 0000-0003-4191-3845

Present Address

${ }^{\ddagger}$ H.N., Kwansei Gakuin University.

Author Contributions

${ }^{\dagger}$ Y.L. and H.N. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by JSPS KAKENHI Grant Numbers JP15H05755 and JP15H05810 for Precisely Designed Catalysts with Customized Scaffolding, and the Program for Leading Graduate Schools: IGER Program in Green Natural Sciences (MEXT). We thank Mr. Katsuya Yamakawa for experimental assistance.

REFERENCES

(1) Shen, H. C. Tetrahedron 2009, 65, 3931 and references therein.
(2) Farrell, P. M. In Vitamin E. A Comprehensive Treatise; Machlin, L. J., Ed.; Marcel Dekker: New York, 1980.
(3) (a) Chen, Z.-Y.; Ma, K. Y.; Liang, Y.; Peng, C.; Zuo, Y. L. Funct. Foods 2011, 3, 61. (b) Aggarwal, B. B.; Sundaram, C.; Prasad, S.; Kannappan, R. Biochem. Pharmacol. 2010, 80, 1613.
(4) Sekimoto, M.; Hattori, Y.; Morimura, K.; Hirota, M.; Makabe, H. Bioorg. Med. Chem. Lett. 2010, 20, 1063.
(5) Valsamakis, G.; Kumar, S. Expert Opin. Pharmacother. 2000, 1, 1413 and references therein.
(6) De Cree, J.; Geukens, H.; Leempoels, J.; Verhaegen, H. Drug Dev. Res. 1986, 8, 109. (b) Van de Water, A.; Janssens, W.; Van Neuten, J.; Xhonneux, R.; De Cree, J.; Verhaegen, H.; Reneman, R. S.; Janssen, P. A. J. I. Cardiovasc. Pharmacol. 1988, 11, 552.
(7) Weyant, M. J.; Carothers, A. M.; Dannenberg, A. J.; Bertagnolli, M. M. Cancer Res. 2001, 61, 118.
(8) (a) Tanaka, S.; Seki, T.; Kitamura, M. Angew. Chem., Int. Ed. 2009, 48, 8948. (b) Tokunou, S.; Nakanishi, W.; Kagawa, N.; Kumamoto, T.; Ishikawa, T. Heterocvcles 2012, 84, 1045. (c) Uyanik, M.; Hayashi, H.; Ishihara, K. Science 2014, 345, 291.
(9) For asymmetric iodofunctionalizations, see: (a) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900. (b) Veitch, G. E.; Jacobsen, E. N. Ansew. Chem., Int. Ed. 2010, 49, 7332. (c) Dobish, M. C.; Johnston, J. N. L. Am. Chem. Soc. 2012, 134, 6068. (d) Fang, C.; Paull, D. H.; Hethcox, J. C.; Shugrue, C. R.; Martin, S. F. Org. Lett. 2012, 14, 6290. (e) Brucks, A. P.; Treitler, D. S.; Liu, S.-A.; Snyder, S. A. Synthesis 2013, 45, 1886. (f) Nakatsuji, H.; Sawamura, Y.; Sakakura, A.; Ishihara, K. Angew. Chem.. Int. Ed. 2014, 53, 6974. (g) Arai, T.; Sugiyama, N.; Masu, H.; Kado, S.; Yabe, S.; Yamanaka, M. Chem. Commun. 2014, 50, 8287. (h) Mizar, P.; Burrelli, A.; Gunther, E.; Softje, M.; Farooq, U.; Wirth, T. Chem. - Eur._. 2014, 20, 13113. (i) Arai, T.; Watanabe, O.; Yabe, S.; Yamanaka, M. Angew. Chem., Int. Ed. 2015, 54, 12767.
(10) For asymmetric bromofunctionalizations, see: (a) Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, A.; Shimura, M.; Fujioka, H. Angew. Chem.. Int. Ed. 2010, 49, 9174. (b) Zhou, L.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. L.Am. Chem. Soc. 2011, 133, 9164. (c) Murai, K.; Nakamura, A.; Matsushita, T.; Shimura, M.; Fujioka, H. Chem. - Eur. I. 2012, 18, 8448. (d) Paull, D. H.; Fang, C.; Donald, J. R.; Pansick, A. D.; Martin, S. F. L. Am. Chem. Soc. 2012, 134, 11128. (e) Wilking, M.; Muck-Lichtenfeld, C.; Daniliuc, C. G.; Hennecke, U. I. Am. Chem. Soc. 2013, 135, 8133. (f) Xie, W.; Jiang, G.; Liu, H.; Hu, J.; Pan, X.; Zhang, H.; Wan, X.; Lai, Y.; Ma, D. Angew. Chem.. Int. Ed. 2013, 52, 12924. (g) Ke, Z.; Tan, C.-K.; Chen, F.; Yeung, Y.-Y. I. Am. Chem. Soc. 2014, 136, 5627. (h) Toda, Y.; Pink, M.; Johnston, J. N. I. Am. Chem. Soc. 2014, 136, 14734. (i) Cheng, Y. A.; Yu, W. Z.; Yeung, Y.-Y. Angew. Chem., Int. Ed. 2015, 54, 12102. (j) Jiang, X.; Tan, C. K.; Zhou, L.; Yeung, Y.-Y. Angew. Chem., Int. Ed. 2012, 51, 7771. (k) Kawato, Y.; Ono, H.; Kubota, A.; Nagao, Y.; Morita, N.; Egami, H.; Hamashima, Y. Chem. - Eur.I. 2016, 22, 2127. (1) Pan, H.; Huang, H.; Liu, W.; Tian, H.; Shi, Y. Org. Lett. 2016, 18, 896. (m) Sawamura, Y.; Ogura, Y.; Nakatsuji, H.; Sakakura, A.; Ishihara, K. Chem. Commun. 2016, 52, 6068. (n) Samanta, R. C.; Yamamoto, H. Am. Chem. Soc. 2017, 139, 1460. (o) Yu, S.-N.; Li, Y.-L.; Deng, J. Adv. Svnth. Catal. 2017, 359, 2499.
(11) For asymmetric chloro- and fluorofunctionalizations, see: (a) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. L. Am. Chem. Soc. 2010, 132, 3298. (b) Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. Angew. Chem., Int. Ed. 2011, 50, 2593. (c) Yin, Q.; You, S. L. Org. Lett. 2014, 16, 2426. (d) Ishimaru, T.; Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2008, 47, 4157. (e) Egami, H.; Niwa, T.; Sato, H.; Hotta, R.; Rouno, D.; Kawato, Y.; Hamashima, Y. L. Am. Chem. Soc. 2018, 140, 2785.
(12) For asymmetric multiple halogenations, see: (a) Wang, Y.-M.; Wu, J.; Hoong, C.; Rauniyar, V.; Toste, F. D. I. Am. Chem. Soc. 2012, 134, 12928. (b) Soltanzadeh, B.; Jaganathan, A.; Staples, R. J.; Borhan, B. Angew. Chem., Int. Ed. 2015, 54, 9517. (c) Zhou, P.; Lin, L.; Chen, L.; Zhong, X.; Liu, X.; Feng, X. L. Am. Chem. Soc. 2017, 139, 13414. (d) Soltanzadeh, B.; Jaganathan, A.; Yi, Y.; Yi, H.; Staples, R. J.; Borhan, B. L.Am. Chem. Soc. 2017, 139, 2132.
(13) For reviews of catalytic asymmetric halofunctionalizations, see: (a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Anoew. Chem.. Int. Ed. 2012, 51, 10938. (b) Tan, C. K.; Yu, W. Z.; Yeung, Y.-Y. Chirality 2014, 26, 328. (c) Chen, J.; Zhou, L. Sunthesis 2014, 46, 586. (d) Mizar, P.; Wirth, T. Sunthesis 2017, 49, 981.
(14) Denmark, S. E.; Burk, M. T.; Hoover, A. J. L. Am. Chem. Soc. 2010, 132, 1232.
(15) Cui, X.-L.; Brown, R. S. L. Org. Chem. 2000, 65, 5653.
(b) Denmark, S. E.; Burk, M. T. Org. Lett. 2012, 14, 256.
(16) Marcus, Y. Chem. Rev. 1988, 88, 1475.
(17) (a) Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem. Soc. Rev. 2013, 42, 1667. (b) Bulfield, D.; Huber, S. M. Chem. - Eur. I. 2016, 22, 14434.
(18) Brown, B. S.; Nagorski, R. W.; Bennet, A. J.; McClung, R. E. D.; Aarts, G. H. M.; Klobukowski, M.; McDonald, R.; Santarsiero, B. D. I. Am. Chem. Soc. 1994, 116, 2448.
(19) We previously reported that a halo-Lewis acid activated molecular iodine to promote iodocyclization. See reference 9f. The screening of halo-Lewis acids is described in SI (Section 1, Tables S14).
(20) See details of DFT calculations in SI (Section 2, Table S5).
(21) For the determination of the absolute configuration of $\mathbf{8 h}-\mathbf{I}, \mathbf{8 j} \mathbf{- I}$, $\mathbf{8 k}-\mathbf{I}, \mathbf{8 n}-\mathbf{I}, \mathbf{1 2 b}-\mathbf{I}$, and $\mathbf{1 2 g}$-I and the proposed models for the asymmetric induction, SI (Section 4).
(22) Iodocyclization of unsaturated aliphatic alcohol and aromatic amides gave the corresponding cyclic products with moderate ee values. Bromocyclization of $7 \mathrm{a}, 7 \mathrm{~h}$, and 11 i did not proceed successfully. For detail, see SI (Schemes S2 and S3).
(23) IBr might be initially generated from I_{2}, 9 a and NBS/DBH at $-78^{\circ} \mathrm{C}$ under the optimized conditions of iodocyclization.
(24) NIS does not directly react with $9 f$ to give 13 under the reaction conditions, because the $9 f$-catalyzed cyclization of 7 a with NIS did not occur at all without I_{2} in toluene at $-78^{\circ} \mathrm{C}$. Thus, the possibility that 9 attacks NIS directly to generate 13 is excluded.
(25) See details in SI (Section 3, Table S6) for the screening of haloLewis acids and reactions using IBr. Although the iodocyclization of 11 g proceeded quite quickly with IBr even in the absence of catalyst, 0.20 equiv of IBr was used for the enantioselective iodocyclization catalyzed by $9 f$.
(26) Rein, C.; Demel, P.; Outten, R. A.; Netscher, T.; Breit, B. Angew. Chem., Int. Ed. 2007, 46, 8670.
(27) (a) Chênevert, R.; Courchesne, G.; Pelchat, N. Bioorg. Med. Chem. 2006, 14, 5389. (b) Couladouros, E. A.; Moutsos, V. I.; Lampropoulou, M.; Little, J. L.; Hyatt, J. A. L. Org. Chem. 2007, 72, 6735.
(28) Urban, F. J.; Moore, B. S. L. Heterocycl. Chem. 1992, 29, 431.

