Literature Report

Total Synthesis of Leuconoxine Melodinine E, and Mersicarpine through a
 Radical Translocation-Cyclization Cascade

Reporter: Chang-Bin Yu
Checker: Xin-Wei Wang

October 28, 2019
Dalian Institute of Chemical Physics

Kim, R.; Beaudry. C. M. et al. Angew. Chem. Int. Ed. 2019, 58,12595.

Contents

- Introduction
- Enantioselective Total Synthesis of Leuconoxine, Melodinine E, and Mersicarpine
- Total Synthesis of Leuconoxine, Melodinine E, and Mersicarpine
- Summary

Introduction

The Aspidosperma Alkaloids

Melodinine E

Leuconoxine

Mersicarpine

- Isolated from dogbane trees;
- Polycyclic structures;
- An indoline structural motif.

Bhadane, B. S. et al. Phytother. Res. 2018, 32, 1181.

Retrosynthetic Analysis

Method 1

Method 2

Synthesis of Intermediate 4

4
NaN_{3}, DMF, rt, overnight
92\%
$\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$
80\% yield

3

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 7

I_{2}, DMAP, $\mathrm{CCl}_{4} / \mathrm{Py}(1: 1)$ 95\% yield

$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, JohnPhos $\mathrm{Ba}(\mathrm{OH})_{2}$, THF, $\mathrm{H}_{2} \mathrm{O}$
75% yield

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 9

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 16

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 11

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 12

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 15

$\mathrm{H}^{+} \downarrow$

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 17

$\downarrow \mathrm{O}_{2}$

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of (+)-Melodinine E, (-)-Scholarisine G

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of (+)-Leuconoxine

Xu, Z.; Zhu. J. et al. J. Am. Chem. Soc. 2013, 135, 19127.

Synthesis of Intermediate 21

18

21

75% yield

69 yield (2 steps)

Kim, R.; Beaudry. C. M. et al. Angew. Chem. Int. Ed. 2019, 58, 12595.

Synthesis of Intermediate 24

$\mathrm{AIBN}, \mathrm{Bu}_{3} \mathrm{SnH}$

Kim, R.; Beaudry. C. M. et al. Angew. Chem. Int. Ed. 2019, 58, 12595.

Synthesis of Intermediate 28

25

95\% yield

28

Kim, R.; Beaudry. C. M. et al. Angew. Chem. Int. Ed. 2019, 58, 12595.

Synthesis of Intermediate 31

Kim, R.; Beaudry. C. M. et al. Angew. Chem. Int. Ed. 2019, 58, 12595.

Synthesis of Intermediate 34

31

34

32

NaOMe EtOH

Kim, R.; Beaudry. C. M. et al. Angew. Chem. Int. Ed. 2019, 58, 12595.

Synthesis of Melodinine E, Leuconoxine

Kim, R.; Beaudry. C. M. et al. Angew. Chem. Int. Ed. 2019, 58, 12595.

Summary


```
Beaudry's work:
The Sonogashira reaction;
1,5-Hydrogen atom transfer.
Zhu's work:
The Suzuki-Miyaura reaction;
Oxidation/reduction/cyclization processes.
```


The First Paragraph

The First Paragraph

```
The Aspidosperma alkaloids are a large class of molecules isolated from dogbane trees native to Central and South! ! America. These alkaloids have attracted considerable attention! !due to their polycyclic structures, biological activities, and; ' interesting biosyntheses.
```


The Last Paragraph

The Last Paragraph

Representative examples

!These alkaloids have attracted considerable attention due to their 1 ; polycyclic structures, biological activities, and interesting biosyntheses. iOur synthesis features a 1,5 -hydrogen atom transfer to give a substituted; ! indoline product.
However, no total synthesis of these natural products has been reported! I ; until now.

I In the context of our continuous interest in the construction of indole rings ; ! at the late stage of total synthesis, we devised a unified strategy to reach! ; different skeletons of aforementioned alkaloids from the same intermediate.
! Efforts to apply the key radical reaction in other alkaloid architectures are;
! currently underway in our laboratory.

Acknowledgement

Thanks

for your kind attention !

