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Asymmetric Fluorination of Enamides



Optimization of the Enamide Fluorination Reaction
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entry R catalyst solvent, time yield (%)a ee (%)b,c

1 CO2Bn (1a) none PhCH3, 8 h 14d -

2 CO Bn (S) C TRIP PhCH 8 h 77 55 (R)2 CO2Bn (S)-C8-TRIP PhCH3, 8 h 77 55 (R)

3 CO2Me (1b) (S)-C8-TRIP PhCH3, 8 h 75 22 (R)

4 Ac (1c) none PhCH3, 8 h 14d -( ) 3,

5 Ac (S)-C8-TRIP PhCH3, 8 h 84 3

6 Bz (1d) (S)-C8-TRIP PhCH3, 8 h 91 90 (R)

7 Bz none PhCH3, 8 h 6d -

8 Bz (S)-C8-TRIP PhF, 24 h 87 90 (R)



entry R catalyst Solvent, time yield (%)a ee (%)b,c

9 Bz (S)-C8-TRIP cyclohexane, 24 h 85 94 (R)9 Bz (S) C8 TRIP cyclohexane, 24 h 85 94 (R)

10 Bz (S)-C8-TRIP hexane, 24 h 88 96 (R)

11 B (S) TRIP PhCH 24 h 83 92 (R)11 Bz (S)-TRIP PhCH3, 24 h 83 92 (R)

12 Bz (S)-TRIP hexane, 24 h 83 92 (R)

13e Bz (S)-TRIP hexane, 24 h 13 11 (R)

a I s o l a t e d y i e l d s a f t e r c h r o m a t o g r a p h y o n s i l i c a g e l , u n l e s s o t h e r w i s e
indicated. bDetermined by HPLC. cAbsolute configurations (in parentheses) were determined by hydrolysis and

comparison of optical rotation with ref 13. d1H NMR yield using 1,2-dimethoxyethane as an internal standard.eReaction
was run in the absence of Na2CO3 . .



Exploration of the Scope of Substituted Enamides
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Fluorination of Unsubstituted Enamides
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Fluorination of Halo-substituted Enamides



Reduction of 2q without Racemization
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Mechanistic proposal for observed absolute stereochemistry



Asymmetric Electrophilic Fluorination Using an Anionic Chiral 
Phase-Transfer Catalyst

T t F D t l S i 2011 334 1681 1684Toste, F. D. et al. Science 2011, 334, 1681-1684
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The proposed catalytic cycle supported by the observed nonlinear effect
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Rapid, General Access to Chiral β-Fluoroamines and β, β-Difluoroamines 
via Organocatalysis

Li d l C W t l O L tt 2009 11 943 946Lindsley, C. W.  et al. Org. Lett. 2009, 11, 943-946 



Organocatalytic Enantioselestive Olefin Aminofluorination

B M S E t l O L tt 2010 12 3356 3359Brenner-Moyer, S. E. et al. Org. Lett. 2010, 12, 3356-3359



Proposed One-Pot Organocascade Reaction

H

O
organocatalyst(s) =

y

x
N
H

z

F

O

H

R

H H

Nucleophile = N
H

R2R1 N R

R2

R1

H

Electrophile = N
SO2Ph

F

PhO2S

zy

x
zy

x

H

N

R

H

N
x

R1

''F''

R HN
R1

R2
O

N R

R2

R1

N

H

R
R1

RR2



Highly Diastereoselective and General Synthesis of Primary β-Fluoroamines
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Enantioselective Fluorination Mediated by Cinchona Alkaloid Derivatives/Selectfluor
Combinations: Reaction Scope and Structural Information for N-Fluorocinchona Alkaloids

Shib t N t l J A Ch S 2001 123 7001 7009Shibata, N. et al. J. Am. Chem. Soc. 2001, 123, 7001-7009



Cinchona Alkaloid Catalyzed Enantioselective Fluoroination of Allyl 
silanes,Silyl Enol Ethers, and Oxindoles
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Enantioselective Synthesis of β-Fluoroamines from β-Amino Alcohols:
Application To the Synthesis of LY503430  
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Rearrangement of 1 and 1’
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Mechanism of the Rearrangement
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Synthesis of β-Fluoroamines by Lewis Base Catalyzed Hydrofluorination
of Aziridines
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Summary

1. Fluorination reagent:

2. Catalysts: 

P
O O

M

N

OMe

Me
Ph O

N

H

O

Cl
OO N

HMe
Ph

N
H

OTMS

Ph

N

OMe
HH Cl



Th l f fl i t i h ti l t h d i thThe prevalence of fluorine atoms in pharmaceutical agents has driven the
development of new methods for the enantioselective introduction of fluorine
into small molecules that may constitute basic building blocks for elaboration
into biologically relevant molecules In this context the chiral β fluoroamineinto biologically relevant molecules. In this context, the chiral β-fluoroamine
motif is one of remarkable utility; the presence of a β-fluorine is well
established to lower the pKa of the amine nitrogen, impacting binding,
metabolism and other pharmacological Properties Nevertheless there aremetabolism, and other pharmacological Properties. Nevertheless, there are
few direct methods for the asymmetric synthesis of β-fluoroamines. Those
that do exist often proceed through processes in which introduction of the
fluorine is not itself asymmetric or through α-fluorocarbonyl compoundsfluorine is not itself asymmetric or through α fluorocarbonyl compounds
generated by enantioselective fluorination of ketones and aldehydes.
Organocatalysis has provided a number of elegant protocols for this
asymmetric α-fluorination reaction, including cinchona alkaloid-mediatedasy et c α uo at o eact o , c ud g c c o a a a o d ed ated
transformations and those based on enamine catalysis. We noted that the
latter highly successful organocatalyic methods proceed via α-fluoroimine
intermediates that are subsequently hydrolyzed for the necessary release ofq y y y y
the secondary amine catalyst. We speculated that a methodology, distinct from
enamine catalysis, in which an enantioenriched α-fluoroimine could be
isolated would be highly versatile. These products could be elaborated

28

through a number of well-precedented pathways to a wide variety of
enantioenriched β-fluoroamines.



In summary, we have extended our concept of anionic phase-transfer
catalysis to encompass the enantioselective fluorination of cyclic enamides.y p y
The scope of this transformation is broad, and we have demonstrated the
effectiveness of the reaction on five-, six-, and seven-membered rings as
well as heterocyclic rings. Our future work will focus on gaining insight into
the factors controlling the selectivity and, more generally, opening new
avenues for this mode of catalysis. .
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