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Background: 



Introduction 

 A bis-tetrahydroisoquinoline natural products isolated from the mantle 

and mucus of the pacific nudibranch Jorunna funebris; 

 Possessing a pentacyclic carbon skeleton, highly oxygenated ring 

termini, and a central pro-iminium ion; 

 The treatment of a variety of drug-resistant and unresectable soft-tissue 

sarcomas and ovarian cancer. 
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(-)-Jorumycin 

Cimino, G. et al. Tetrahedron 2000, 56, 7305 

Jorunna funebris   
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Introduction 

Bis-Tetrahydroisoquinoline (bis-THIQ) natural products 

Alaloids that display exceptional anticancer activity 
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Introduction 

A non-biomimetic approach will produce complementary  

analogs for bioactivity and medicinal chemistry studies 
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Sonogashira Coupling 
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Boekelheide Reaction 
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TEMPO Oxidation 
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Hydroxylation of Aryl Halides by Stradiotto 

Stradiotto, M. et al. Adv. Synth. Catal. 2013, 355, 981 



Retrosynthetic Analysis   
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Synthesis of Isoquinoline Monomer 8  
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Synthesis of Isoquinoline Monomer 9 
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Synthesis of Isoquinoline Monomer 9 
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Fagnou Coupling 
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Fagnou, K. et al. J. Am. Chem. Soc. 2008, 130, 3266 



Synthesis of Hydrogenation Precursor 7 
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First Generation 



Synthesis of Hydrogenation Precursor 7 
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First Generation 



Synthesis of Hydrogenation Precursor 7 
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Second Generation 



Synthesis of Hydrogenation Precursor 7 
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Second Generation 



Lactam Formation 
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Directed Si-face reduction of 7 leads to enantioenriched generation of intermediate 31 

 

Three-dimensional structure of 31·M leads to substrate-reinforced diastereoselectivity 



Reduction Optimization Studies 
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Reduction Optimization Studies 
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entry 
catalyst 

loading 
ligand temperature yield 31a ee 31b yield 5a dr 5c ee 5b 

1 5 mol% 34 23 oC 2% ND 0% -- -- 

2 5 mol% 32 60 oC 22% -82% 0% -- -- 

3 5 mol% 33 60 oC 26% -87% 0% -- -- 

4 5 mol% 34 60 oC 30% 80% 0% -- -- 

5 5 mol% 35 60 oC 83% 94% 10% > 20:1 ND 

6 5 mol% 35 80 oC 31% 87% 43% > 20:1 ND 

7 5 mol% 35 60 oC to 80 oCd 7% 94% 59% > 20:1 88% 

8 10 mol% 35 60 oC to 80 oCd 3% 94% 83% > 20:1 
88% 

(>99%)e 

a Measured by UHPLC-MS UV absorption vs. 1,3,5-trimethoxybenzene internal standard unless otherwise noted. b Measured by 

chiral HPLC analysis. c Measured by 1H-NMR analysis of the crude reaction mixture. d Reaction performed at 60°C for 18 hours, 

then the temperature was raised to 80 oC and maintained at that temperature for 24 hours. e After one recrystallization. 



Explanation of Selectivity Differences 
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B-ring: Activated by proximity to hydroxyl directing group 

D-ring: Electronically activated by ester for hydritic reduction 

B-ring reduction: fast with all successful ligands 

D-ring reduction: only observed with BTFM-Xyliphos ligand 

Conclusion: Hydroxyl direction lowers activation energy more than electronic activation 



Explanation of Selectivity Differences 
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31 was found to be unstable to isolation,  

presumably due to reaction between amine and ester 



Explanation of Selectivity Differences 
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Endgame Synthesis of Jorumycin 
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Endgame Synthesis of Jorumycin 
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Synthesis of Derivatives 
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Synthesis of Derivatives 
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Summary 
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 15 and 16 steps, 0.24% and 0.17% overall yield respectively; 

 Harnesses the power of modern transition-metal catalysis for the three 

major bond-forming events; 

 Proceeds with high efficiency ; 

 By breaking from biomimicry, this strategy allows for the preparation of a 

more diverse set of non-natural analogs. 



The bis-tetrahydroisoquinoline natural products have been studied 

intensively by chemists and biologists alike during the 40+ years since their 

initial discovery due to their intriguing chemical structures, potent biological 

activities, and unique mechanisms of action. Jorumycin and its congeners 

ecteinascidin 743 and jorunnamycin A possess a pentacyclic carbon 

skeleton, highly oxygenated ring termini, and a central pro-iminium ion. This 

latter functionality serves as an alkylating agent in vivo, resulting in covalent 

modification of DNA in a process that ultimately leads to cell death. The 

promise of these natural products as anticancer agents has been realized in 

the case of Et 743 (Yondelis®, trabectedin), which has been approved in the 

US, Europe, and else-where for the treatment of a variety of drug-resistant 

and unresectable soft-tissue sarcomas and ovarian cancer. Unfortunately, 

although 2 is available from nature, isolation of one gram of the drug would 

require more than one ton of biological material. 

The First Paragraph  

31 



For this reason, the successful application of 2 as an antitumor agent has 

necessitated its large-scale chemical synthesis, a 21-step process that 

begins with cyanosafracin A, a fermentable and fully functionalized bis-THIQ 

natural product. This has restricted medicinal chemistry endeavors via this 

route to the production of only compounds with a high degree of similarity to 

the natural products themselves. 

The First Paragraph  
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The Last Paragraph  
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The use of catalysis, rather than native reactivity, is a key advantage to our 

synthesis, allowing us to expedite access to both the natural products 

themselves, and also biologically relevant derivatives. 
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