Literature Report 1

Bioinspired Asymmetric Synthesis of Hispidanin A

Reporter: Zhou-Hao Zhu Checker: Guang-Shou Feng Date: 2017-12-04

Li, F.; Tu, Q.; Chen, S.; Zhu, L.; Lan, Y.*; Gong, J.*; Yang, Z.* Angew. Chem. Int. Ed. 2017, 56, 5844

2 Some Important Reactions Used in This Article

3 Bioinspired Asymmetric Synthesis of Hispidanin A

4 Summary

CV of Prof. Zhen Yang

Background:

1978-1986 B.S. & M.S., Shenyang Pharmaceutical University
1989-1992 Ph.D., The Chinese University of Hong Kong
1992-1995 Postdoctoral, Scripps Research Institute
1995-1998 Assistant Professor, Scripps Research Institute
1998-2001 Institute Fellow, Harvard University

Zhen Yang

Research Interests:

Development of synthetic methods for synthesis of complex natural product molecules and application of synthetic chemistry for drug discovery.

Hispidanin A

Rabdosia Hispida

- Isolated from the Rabdosia Hispida in 2014;
- 11 stereogenic centers and unique asymmetric structures formed by the bonding of totarane-type dienophile and labdane-type dienes;
- A folk medicine to treat cancers and inflammatory conditions in China.

Huang, B.; Xiao, C.; Huang, Z.; Jiang, B.* et al. Org. Lett. 2014, 16, 3552

Natural Products Isolated from Rabdosia Hispida

Huang, B.; Xiao, C.; Huang, Z.; Jiang, B.* et al. Org. Lett. 2014, 16, 3552

Hypothetical Biosynthetic Pathways for Hispidanins

Hypothetical Biosynthetic Pathways for Hispidanins

Huang, B.; Xiao, C.; Huang, Z.; Jiang, B.* et al. Org. Lett. 2014, 16, 3552

Non-enzymatic Diels-Alder reaction For the synthesis of Plagiospirolide A

Kato, N.; Wu, X.; Takeshita, H.* et al. J. Chem. Soc. Perkin Trans. 1. 1994, 1047

Criegee Mechanism of Ozonolysis

Robinson Annulation

Remote Intramolecular Radical Cyclization

Dess-Martin Oxidation

Wittig Olefination

Unstabilized yildes give predominantly (Z)-Olefins Stabilized yildes give predominantly (E)-Olefins Semi-stabilized yildes give alkenes with poorer stereoselectivity

Diels-Alder Reaction

$$\left(\begin{array}{c} + \\ \end{array}\right)^{*} \longrightarrow \left[\begin{array}{c} \\ \end{array}\right]^{*} \longrightarrow \left(\begin{array}{c} \\ \end{array}\right)$$

Device for predicting the regioselectivity: draw out "zwitterionic" representations (resonance structures) for the reactants.

More stable resonance forms

Retrosynthetic Analysis of Hispidanin A

Retrosynthetic Analysis of Hispidanin A

H

(E) (E) (E) (E) (E) (E) (E) (E) (E) (E)	+ $(H) = 0$ Conditions	Hispidanin A (4)
Entry	Conditions	Yield [%] ^[a]
1	BHT, neat, 120 °C, 24 h	59
2	Er(fod) ₃ , neat, 120 ºC, 24 h	64
3	BF ₃ ·Et ₂ O, toluene, 100 °C, 24 h	Decomposed
4	ZnCl ₂ , toluene, 0 °C to RT, 24 h	35 ^[b]
5	Me ₂ AICI, toluene, 0 °C to RT, 24 h	n 27

^[a] Yield of isolated product. ^[b] Overall yield of compound **4** and its diastereoisomer (2:1).

Hispidanin A

- 12 steps, 6.5% overall yield
- The first enantiospecific synthesis of Hispidanin A
- Use of abundant and naturally occurring diterpenoids (+)-sclareolide and (+)-sclareol as starting materials
- Construction of the tetrahydrofuran ring achieved through remote intramolecular free radical functionalization
- A highly enantioselective intermolecular Diels-Alder reaction

The First Paragraph

Hispidanins A–D comprise a class of unprecedented dimeric diterpenoids isolated from the rhizomes of Isodon hispida, which are widely used as a folk medicine to treat cancers, inflammatory conditions, and various other diseases in China. According to the report of its isolation, hispidanins A and B were proposed to be biosynthesized through enzyme-catalyzed intermolecular Diels–Alder reactions of the totaranetype dienophile 1 with the labdane-type dienes 2 and 3, respectively. Such a proposal is reasonable based on earlier observations that support the endo-selective DA process and electronic factors that favor the addition of the terminal double bond (C15') in **2** to the β -position (C17) in **1** to form the sterically demanding central E ring.

Furthermore, hispidanins C and D were expected to be derived from hispidanin B through a sequential epoxidation and reductive epoxideopening reactions.

The Last Paragraph

In summary, we accomplished an enantioselective total synthesis of hispidanin A (4) with a longest linear sequence of 12 steps and an overall yield of 6.5%. The key features of our synthesis include: 1) oxidative alkoxylation of the C20' methyl group to construct the tetrahydrofuran ring in 21, which was achieved through remote intramolecular free radical functionalization; 2) a highly enantioselective intermolecular DA reaction. Our results demonstrated that the naturally occurring 4 is the favored product of naturally occurring sclareol and sclareolide generated under nonenzymatic conditions using either thermal conditions or an Erbium-mediated asymmetric intermolecular DA reaction. This also provides evidence that the biosynthetic route for hispidanin B might be similar.

Acknowledgement

