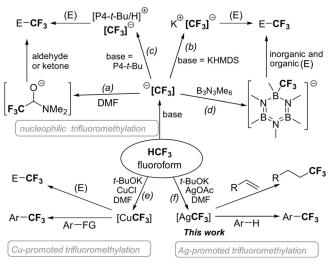


Trifluoromethylation Hot Paper

International Edition: DOI: 10.1002/anie.201905782 German Edition: DOI: 10.1002/ange.201905782

Argentination of Fluoroform: Preparation of a Stable AgCF₃ Solution with Diverse Reactivities


Jia-Xiang Xiang, Yao Ouyang, Xiu-Hua Xu, and Feng-Ling Qing*

Abstract: The transformation of a large-volume industrial byproduct and stable greenhouse gas fluoroform (HCF₃) to useful products has recently received significant attention. Now, a simple and scalable preparation of $AgCF_3$ by treatment of HCF₃ with t-BuOK and AgOAc is disclosed. The reactivity of the HCF₃-derived AgCF₃ has been demonstrated by hydrotrifluoromethylation of alkenes and C-H trifluoromethylation of (hetero)arenes. This work not only provides a new avenue for the utilization of HCF₃, but also presents a reliable and easy-to-execute synthesis of the relatively stable $AgCF_3$ solution.

F luoroform (HCF₃) is a large-volume by-product from fluoropolymer manufacturing and has a large greenhouse effect.^[1] The utilization of fluoroform as a feedstock for the preparation of valuable fluorinated compounds is a clearly preferred alternative to the destruction of fluoroform. Obviously, the application of fluoroform for the trifluoromethylation reaction is a highly attractive and much-sought-after goal,^[2] as it is the cheapest and most atom-economical but lowest-reactivity CF₃ source.

The common strategy to use HCF₃ in trifluoromethylation reactions is based on deprotonation with strong bases. Several groups have reported the nucleophilic trifluoromethylation of carbonyl compounds with HCF₃ in the presence of electrogenerated bases or alkali metal bases in DMF (Scheme 1 a).^[3] The solvent DMF traps the CF₃ anion generated in situ, which easily decomposes to the fluoride anion and difluorocarbene,^[4] producing a reservoir of trifluoromethylating hemiaminolate species. Prakash (Scheme 1 b)^[5] and Shibata (Scheme 1 c)^[6] described the nucleophilic trifluoromethylation with HCF₃ in common organic solvents such as THF, ether, and toluene using KHMDS or P4-*t*-Bu, respectively as the base. Very recently, Szymczak disclosed that hexamethylborazine (B₃N₃Me₆) could act as a suitable Lewis acid to stabilize the CF₃ anion.^[7] This HCF₃-derived borazine CF₃⁻ adduct is

Scheme 1. Use of HCF₃ in trifluoromethylation reactions.

highly nucleophilic and reacts with a broad variety of inorganic and organic electrophiles (Scheme 1 d).

In 2011, Grushin discovered a methodologically different approach to activation of HCF₃ through direct cupration of HCF₃ with *t*-BuOK and CuCl in DMF (Scheme 1e).^[8a] This HCF₃-derived CuCF₃ not only reacts with electrophiles, but also trifluoromethylates aryl halides, boronic acids, and diazonium salts.^[8] Following Grushin's pioneering work, several groups further extended the application of HCF₃derived CuCF₃ for Cu-promoted trifluoromethylation of a wider range of substrates.^[9] Beside cupration of HCF₃, the direct metalation of HCF₃ with other metals (Zn,^[10] Ir,^[11] and Pd^[12]) has also been reported. However, the synthetic applications of these metal–CF₃ complexes are limited.^[10–12]

Recently, our group^[13] and others^[14,15] developed a series of Ag-promoted trifluoromethylation reactions in which AgCF₃ was formed as the reactant^[14] or reaction intermediate.^[13,15] Owing to thermal and light sensitivity, AgCF₃ normally needs to be freshly prepared^[14] or generated in situ^[13,15] from TMSCF₃ and AgF. On the other hand, although the stable ligand-supported AgCF3 complexes^[14d, 15b, 16] are available, they are only used as transmetalating agents. Therefore, the synthesis of stable AgCF₃ with diverse reactivities is highly desirable. As part of our research interest in the development of trifluoromethylation reaction using cheap CF₃ sources,^[17] herein we disclose a practical preparation of the stable AgCF₃ solution from simple and inexpensive materials HCF₃, t-BuOK, and AgOAc (Scheme 1 f). The synthetic utility of the HCF₃-derived AgCF₃ is exemplified by hydrotrifluoromethylation of alkenes and C-H trifluoromethylation of (hetero)arenes. Notably, it is difficult to achieve these transformations directly from the HCF_3 -derived $CuCF_3$.

Our investigation started with the preparation of $AgCF_3$ by treatment of an excess of HCF_3 with *t*-BuOK in the presence of Ag^I salts using DMF as the solvent (Table 1). The

+ BUOK

Table 1: Preparation of AgCF₃ from HCF₃.^[a]

HCF ₃	+ Ag salt -	DMF, rt [AgCF	F ₃] + [Ag(CF ₃) ₂] ⁻
Entry	Ag salt	Yield [AgCF ₃] [%] ^[b]	Yield [Ag(CF ₃) ₂] ⁻ [%] ^[b]
1	AgCl	41	4
2	AgBr	20	28
3	AgNO ₃	0	22
4	$AgBF_4$	0	23
5	AgOAc	59	12
6	AgOCOCF ₃	48	8
7 ^[c]	AgOAc	80	4
8 ^[c,d]	AgOAc	80	4
9 ^[e]	AgOAc	87	3

[a] Reaction conditions: HCF₃ (excess), Ag salt (0.2 mmol), *t*-BuOK (1.0 mmol), DMF (2.0 mL), N₂, rt, 8 h. [b] Yields determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard. [c] The reaction was performed for 1 h. [d] HCF₃ (0.2 mmol), *t*-BuOK (0.4 mmol). [e] HCF₃ (40.0 mmol), AgOAc (40.0 mmol), *t*-BuOK (80.0 mmol), DMF (40.0 mL), N₂, rt, 1 h.

use of AgCl afforded the $[AgCF_3]$ (resonates at $\delta = -20.7$ ppm, d, $J(^{107/109}Ag-F) = 109.0/124.1$ Hz)^[14a,18] in 41 % yield along with $[Ag(CF_3)_2]^-$ (resonates at $\delta = -25.4$ ppm, d, $J(^{107/109}Ag-F) = 86.5/101.5$ Hz)^[14a,18] in 4% yield (entry 1). Then, other Ag^I salts were screened to improve the yield of AgCF₃. Among all the Ag^I salts (entries 2–6), AgOAc was optimal to afford AgCF₃ in highest yield (entry 5). Reducing the reaction time from 8 to 1 h further improved the yield (entry 7). The use of stoichiometric amount of CF₃H also led to satisfactory yield (entry 8). Notably, this reaction can be easily scaled up to 40.0 mmol in 87% yield (entry 9).

Like the HCF₃-derived CuCF₃,^[8a] HCF₃-derived AgCF₃ also exhibited high stability. The solution of HCF₃-derived AgCF₃ in DMF was stored under N₂ atmosphere in the refrigerator for months without noticeable decomposition. Even a solution of AgCF₃ in DMF (0.55 M) was placed under air at room temperature, only slow decomposition of AgCF₃ was detected (Table 2). Furthermore, the thermal stability of the HCF₃-derived AgCF₃ solution was probed. This solution was found to have reasonable stability at 60 °C for hours (Table 2).

Table 2: Stability of HCF₃-derived AgCF₃ solution.

		, , , , , , , , , , , , , , , , , , , ,	
Entry	t [h]	in air at rt M ([AgCF ₃]+[Ag(CF ₃) ₂] ⁻) ^[a]	under N ₂ at 60°C M ([AgCF ₃]+[Ag(CF ₃) ₂] ⁻) ^[a]
1	0	0.53+0.02	0.53+0.02
2	4	0.52+0.02	0.32+0.03
3	12	0.50+0.02	0.25+0.02
4	24	0.44+0.02	0.15 + 0.01
5	48	0.41 + 0.02	0.08+0.01

[a] Concentrations determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard. This HCF₃-derived AgCF₃ solution is a rare example of stable AgCF₃ reagents. It is much more stable than the common AgCF₃ reagent prepared from TMSCF₃ and AgF in MeCN (Table 3, entries 1 and 2). When DMF was used as

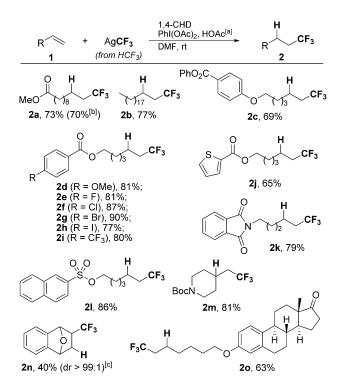
Table 3: Comparison of HCF_3 -derived $AgCF_3$ with those prepared from $TMSCF_3$.

Entry	Preparation of AgCF ₃	%	remaine	d in air at	rt ^[a]
		0 h	4 h	12 h	24 h
1	HCF₃ t-BuOK/AgOAc/DMF	100	98	95	84
2	TMSCF ₃ AgF/MeCN	100	68	39	trace
3	TMSCF₃ AgF/DMF	100	70	46	trace
4	TMSCF₃ AgF/DMF/KOAc	100	76	66	18
5	TMSCF ₃ AgF/DMF/ <i>t</i> -BuOK	100	83	73	53
6	TMSCF₃ AgF/DMF/ <i>t</i> -BuOH	100	74	11	trace

[a] Percentages determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard.

solvent instead of CH₃CN for the formation of AgCF₃ from TMSCF₃ and AgF, the stability of AgCF₃ reagent was slightly improved, but was still significantly lower than that of HCF₃-derived AgCF₃ solution (entry 3). Furthermore, the effect of additive on the stability of AgCF₃ generated from TMSCF₃ and AgF was investigated. Among these additives, including KOAc, *t*-BuOK, and *t*-BuOH, it was found that *t*-BuOK was crucial to the stability of AgCF₃ (entries 4–6).

With the HCF₃-derived AgCF₃ in hand, the hydrotrifluoromethylation of alkenes was then examined using methyl undec-10-enoate (**1a**) as the model substrate.^[19] The reaction of **1a** with a solution of AgCF₃ in DMF in the presence of 1,4cyclohexadiene (1,4-CHD) failed to afford the desired product **2a** (Table 4, entry 1). As HCF₃-derived AgCF₃ is too stable to spontaneously collapse to form the CF₃ radical,


Table 4: Optimization of reaction conditions for hydrotrifluoromethylation of alkene $1 a^{[a]}$

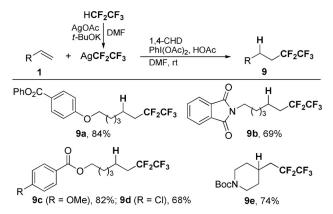
MeO	$\begin{array}{c} O \\ H \\$	1,4-CHD O oxidant, additive MeO	H CF ₃ 2a
Entry	Oxidant	Additive	Yield [%] ^[b]
1	-		0
2	PhI (OAc) ₂		50
3	PhI (OCOCF ₃) ₂		43
4	PhI(OAc) ₂	pyridine	42
5	PhI(OAc) ₂	NEt ₃	48
6	PhI (OAc) ₂	<i>t</i> -BuOH	60
7	PhI(OAc) ₂	HOAc	85
8	PhI(OAc) ₂	CF ₃ CO ₂ H	70
9	PhI (OAc) ₂	CF_3SO_3H	75

[a] Reaction conditions: 1a (0.2 mmol), AgCF₃ (0.4 M, 2.0 mL, 0.8 mmol), 1,4-CHD (0.4 mmol), oxidant (0.8 mmol), additive (0.2 mmol), DMF (2.0 mL), N₂, rt, 12 h. [b] Yields determined by ¹⁹F NMR spectroscopy using trifluorotoluene as an internal standard.


the extra oxidant was used to oxidize AgCF₃ to generate CF₃ radical. Accordingly, when PhI(OAc)₂ was added to the reaction mixture, the desired product **2a** was formed in 50% yield (entry 2). Switching the oxidant to PhI(OCOCF₃)₂ led to lower yield (entry 3). Subsequently, different additives including *N*- or *O*-containing donors were added to further improve the yield of **2a** (entries 4–9). Among them, HOAc was optimal to furnish **2a** in 85% yield (entry 7). The role of HOAc might be to activate *t*-BuOH- and/or DMF-coordinated AgCF₃ complex through ligand exchange.^[9m,20]

The scope of this oxidative hydrotrifluoromethylation was then investigated using HCF_3 -derived $AgCF_3$ under optimized reaction conditions. As shown in Scheme 2, various

Scheme 2. Hydrotrifluoromethylation of alkenes with AgCF₃. [a] Reaction conditions: **1** (0.6 mmol), AgCF₃ (0.4 M, 6.0 mL, 2.4 mmol), 1,4-CHD (1.2 mmol), PhI(OAc)₂ (2.4 mmol), HOAc (0.6 mmol), DMF (6.0 mL), N₂, rt, 12 h, yields of isolated products. [b] The reaction was performed on 6.0 mmol. [c] Diastereomeric ratio was determined by ¹⁹F NMR analysis of the reaction mixture.


alkenes were converted to the hydrotrifluoromethylated products in moderate to excellent yields. Interestingly, the reaction of **1a** was scaled up to 6.0 mmol with good efficiency. A wide range of functional groups, such as ether, ester, sulfonate, amide, and halogen atoms were well-tolerated under the reaction conditions. It should be noted that alkene **1j** bearing thienyl moiety was compatible with the reaction protocol. Furthermore, 1,1-disubstituted alkene **1m** delivered **2m** in 81% yield, whereas 1,2-disubstituted alkene **1n** furnished **2n** in 40% yield. The synthetic utility of this reaction was also demonstrated by late-stage hydrotrifluoromethylation of estrone derivative (**1o**). This HCF₃-derived AgCF₃ was applied to other types of trifluoromethylation reactions. For instance, the C–H trifluoromethylation of arene **3** and heteroarene **4** with AgCF₃ afforded trifluoromethylated products **5** and **6** in moderate yields (Scheme 3 a). Furthermore, treatment of 2,3-dicyano-

Scheme 3. Trifluoromethylation of (hetero)arenes and quinone with AgCF₃.

5,6-dichlorobenzoquinone (DDQ, **7**) with AgCF₃ using PhOH as a proton donor furnished 1,6-hydrotrifluoromethylated^[21] product **8** in 57% yield (Scheme 3b). The 1,6-hydrotrifluoromethylation of quinones is previously unknown and might find applications for the preparation of novel 4-trifluoromethoxyphenols.

To extend the application of this protocol, AgCF₂CF₃ was prepared from HCF₂CF₃ (HFC-125, fire extinguishing agent) and applied to the hydropentafluoroethylation of alkenes (Scheme 4). Being different from the preparation of AgCF₃ along with formation of minor $[Ag(CF_3)_2]^-$ (Table 1), $[AgCF_2CF_3]$ was solely formed when HCF₂CF₃ was treated with *t*-BuOK and AgOAc.^[22] The oxidative hydropentafluoroethylation of alkenes in the presence of PhI(OAc)₂, 1,4-CHD, and HOAc also proceeded efficiently to give the

Scheme 4. Hydropentafluoroethylation of alkenes with $AgCF_2CF_3$. Reaction conditions: **1** (0.6 mmol), $AgCF_2CF_3$ (0.4 M, 6.0 mL, 2.4 mmol), 1,4-CHD (1.2 mmol), PhI(OAc)₂ (2.4 mmol), HOAc (0.6 mmol), DMF (6.0 mL), N₂, rt, 12 h, yields of isolated products.

10322 www.angewandte.org

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Angew. Chem. Int. Ed. 2019, 58, 10320-10324

Angewandte International Edition

pentafluoroethylated products in moderate to excellent yields. $^{[23]}$

In conclusion, we have described a new protocol for the utilization of fluoroform through the transformation to the synthetically useful AgCF₃. The HCF₃-derived AgCF₃ solution exhibited unique stability and diverse reactivities. Furthermore, HCF₂CF₃ was also converted to AgCF₂CF₃ solution for the preparation of pentafluoroethylated products. Further developments of new applications of R_fH-derived R_fAg are under investigation in our laboratory.

Acknowledgements

The National Natural Science Foundation of China (21332010, 21421002), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000), and Youth Innovation Promotion Association CAS (No. 2016234) are greatly acknowledged for funding this work.

Conflict of interest

The authors declare no conflict of interest.

Keywords: alkenes \cdot fluoroform \cdot pentafluoroethylation \cdot silver \cdot trifluoromethylation

How to cite: Angew. Chem. Int. Ed. 2019, 58, 10320–10324 Angew. Chem. 2019, 131, 10426–10430

[1] W. Han, Y. Li, H. Tang, H. Liu, J. Fluorine Chem. 2012, 140, 7.

- [2] V. V. Grushin, Chim. Oggi 2014, 32, 81.
- [3] a) T. Shono, M. Ishifune, T. Okada, S. Kashimura, J. Org. Chem. 1991, 56, 2; b) R. Barhdadi, M. Troupel, J. Perichon, Chem. Commun. 1998, 1251; c) B. Folléas, I. Marek, J.-F. Normant, L. Saint-Jalmes, Tetrahedron Lett. 1998, 39, 2973; d) J. Russell, N. Roques, Tetrahedron 1998, 54, 13771; e) B. Folléas, I. Marek, J.-F. Normant, L. Saint-Jalmes, Tetrahedron 2000, 56, 275; f) S. Large, N. Roques, B. R. Langlois, J. Org. Chem. 2000, 65, 8848; g) T. Billard, S. Bruns, B. R. Langlois, Org. Lett. 2000, 2, 2101; h) S. Mukhopadhyay, A. T. Bell, R. V. Srinivas, G. S. Smith, Org. Process Res. Dev. 2004, 8, 660; i) D. van der Born, J. D. M. Herscheid, R. V. A. Orru, D. J. Vugts, Chem. Commun. 2013, 49, 4018; j) E. Carbonnel, T. Besset, T. Poisson, D. Labar, X. Pannecoucke, P. Jubault, Chem. Commun. 2017, 53, 5706.
- [4] a) C. S. Thomoson, W. R. Dolbier, Jr., J. Org. Chem. 2013, 78, 8904; b) C. S. Thomoson, L. Wang, W. R. Dolbier, J. Fluorine Chem. 2014, 168, 34; c) S. Okusu, E. Tokunaga, N. Shibata, Org. Lett. 2015, 17, 3802; d) M. Köckinger, T. Ciaglia, M. Bersier, P. Hanselmann, B. Gutmann, C. O. Kappe, Green Chem. 2018, 20, 108; e) M. Köckinger, C. A. Hone, B. Gutmann, P. Hanselmann, M. Bersier, A. Torvisco, C. O. Kappe, Org. Process Res. Dev. 2018, 22, 1553.
- [5] a) G. K. S. Prakash, P. V. Jog, P. T. D. Batamack, G. A. Olah, Science 2012, 338, 1324; b) G. K. S. Prakash, F. Wang, Z. Zhang, R. Haiges, M. Rahm, K. O. Christe, T. Mathew, G. A. Olah, Angew. Chem. Int. Ed. 2014, 53, 11575; Angew. Chem. 2014, 126, 11759.
- [6] a) H. Kawai, Z. Yuan, E. Tokunaga, N. Shibata, Org. Biomol. Chem. 2013, 11, 1446; b) Y. Zhang, M. Fujiu, H. Serizawa, K. Mikami, J. Fluorine Chem. 2013, 156, 367; c) S. Okusu, K. Hirano, E. Tokunaga, N. Shibata, ChemistryOpen 2015, 4, 581;

d) N. Punna, T. Saito, M. Kosobokov, E. Tokunaga, Y. Sumii, N. Shibata, *Chem. Commun.* **2018**, *54*, 4294.

- [7] a) J. B. Geri, N. K. Szymczak, J. Am. Chem. Soc. 2017, 139, 9811;
 b) J. B. Geri, M. M. W. Wolfe, N. K. Szymczak, Angew. Chem. Int. Ed. 2018, 57, 1381; Angew. Chem. 2018, 130, 1395.
- [8] a) A. Zanardi, M. A. Novikov, E. Martin, J. Benet-Buchholz, V. V. Grushin, J. Am. Chem. Soc. 2011, 133, 20901; b) P. Novák, A. Lishchynskyi, V. V. Grushin, Angew. Chem. Int. Ed. 2012, 51, 7767; Angew. Chem. 2012, 124, 7887; c) P. Novák, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2012, 134, 16167; d) A. Lishchynskyi, M. A. Novikov, E. Martin, E. C. Escudero-Adán, P. Novák, V. V. Grushin, J. Org. Chem. 2013, 78, 11126; e) A. Lishchynskyi, G. Berthon, V. V. Grushin, Chem. Commun. 2014, 50, 10237; f) Z. Mazloomi, A. Bansode, P. Benavente, A. Lishchynskyi, A. Urakawa, V. V. Grushin, Org. Process Res. Dev. 2014, 18, 1020; g) A. Lishchynskyi, Z. Mazloomi, V. V. Grushin, Synlett 2015, 26, 45.
- [9] a) D. van der Born, C. Sewing, J. D. M. Herscheid, A. D. Windhorst, R. V. A. Orru, D. J. Vugts, Angew. Chem. Int. Ed. 2014, 53, 11046; Angew. Chem. 2014, 126, 11226; b) P. Ivashkin, G. Lemonnier, J. Cousin, V. Grégoire, D. Labar, P. Jubault, X. Pannecoucke, Chem. Eur. J. 2014, 20, 9514; c) S. Potash, S. Rozen, J. Org. Chem. 2014, 79, 11205; d) S. Potash, S. Rozen, J. Fluorine Chem. 2014, 168, 173; e) L. He, G. C. Tsui, Org. Lett. 2016, 18, 2800; f) L. He, X. Yang, G. C. Tsui, J. Org. Chem. 2017, 82, 6192; g) X. Yang, L. He, G. C. Tsui, Org. Lett. 2018, 83, 8150; i) Y. Ye, K. P. S. Cheung, L. He, G. C. Tsui, Org. Chem. 2018, 83, 8150; i) Y. Ye, K. P. S. Cheung, L. He, G. C. Tsui, Org. Lett. 2018, 20, 1179; k) Y. Ye, K. P. S. Cheung, L. He, G. C. Tsui, Org. Lett. 2018, 20, 1676; l) X. Yang, G. C. Tsui, Chem. Sci. 2018, 9, 8871; m) Q. Ma, G. C. Tsui, Org. Chem. Front. 2019, 6, 27.
- [10] I. Popov, S. Lindeman, O. Daugulis, J. Am. Chem. Soc. 2011, 133, 9286.
- [11] J. Choi, D. Y. Wang, S. Kundu, Y. Choliy, T. J. Emge, K. Krogh-Jespersen, A. S. Goldman, *Science* 2011, 332, 1545.
- [12] S. Takemoto, V. V. Grushin, J. Am. Chem. Soc. 2013, 135, 16837.
- [13] a) X. Wu, L. Chu, F.-L. Qing, Angew. Chem. Int. Ed. 2013, 52, 2198; Angew. Chem. 2013, 125, 2254; b) J.-B. Liu, C. Chen, L. Chu, Z.-H. Chen, X.-H. Xu, F.-L. Qing, Angew. Chem. Int. Ed. 2015, 54, 11839; Angew. Chem. 2015, 127, 12005; c) J.-B. Liu, X.-H. Xu, F.-L. Qing, Org. Lett. 2015, 17, 5048.
- [14] a) Y. Zeng, L. Zhang, Y. Zhao, C. Ni, J. Zhao, J. Hu, J. Am. Chem. Soc. 2013, 135, 2955; b) X. Wang, Y. Xu, F. Mo, G. Ji, D. Qiu, J. Feng, Y. Ye, S. Zhang, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2013, 135, 10330; c) C. F. Harris, C. S. Kuehner, J. Bacsa, J. D. Soper, Angew. Chem. Int. Ed. 2018, 57, 1311; Angew. Chem. 2018, 130, 1325; d) S. Martínez de Salinas, Á. L. Mudarra, J. Benet-Buchholz, T. Parella, F. Maseras, M. H. Pérez-Temprano, Chem. Eur. J. 2018, 24, 11895.
- [15] a) Y. Ye, S. H. Lee, M. S. Sanford, Org. Lett. 2011, 13, 5464; b) Z. Weng, R. Lee, W. Jia, Y. Yuan, W. Wang, X. Feng, K.-W. Huang, Organometallics 2011, 30, 3229; c) A. Hafner, S. Bräse, Angew. Chem. Int. Ed. 2012, 51, 3713; Angew. Chem. 2012, 124, 3773; d) Z. Mao, F. Huang, H. Yu, J. Chen, Z. Yu, Z. Xu, Chem. Eur. J. 2014, 20, 3439; e) J.-S. Lin, X.-G. Liu, X.-L. Zhu, B. Tan, X.-Y. Liu, J. Org. Chem. 2014, 79, 7084; f) F. Teng, J. Cheng, C. Bolm, Org. Lett. 2015, 17, 3166; g) Y.-B. Wu, G.-P. Lu, T. Yuan, Z.-B. Xu, L. Wan, C. Cai, Chem. Commun. 2016, 52, 13668.
- [16] B. K. Tate, A. J. Jordan, J. Bacsa, J. P. Sadighi, *Organometallics* 2017, 36, 964.
- [17] a) L. Chu, F.-L. Qing, Acc. Chem. Res. 2014, 47, 1513; b) X.-Y. Jiang, F.-L. Qing, Angew. Chem. Int. Ed. 2013, 52, 14177; Angew. Chem. 2013, 125, 14427; c) Y. Ouyang, X.-H. Xu, F.-L. Qing, Angew. Chem. Int. Ed. 2018, 57, 6926; Angew. Chem. 2018, 130, 7042; d) B. Yang, D. Yu, X.-H. Xu, F.-L. Qing, ACS Catal. 2018, 8, 2839.

Angew. Chem. Int. Ed. 2019, 58, 10320-10324

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [18] a) D. Naumann, W. Tyrra, J. Organomet. Chem. 1987, 334, 323;
 b) D. Naumann, W. Wessel, J. Hahn, W. Tyrra, J. Organomet. Chem. 1997, 547, 79.
- [19] For selected examples of hydrotrifluoromethylation of alkenes, see: a) S. Mizuta, S. Verhoog, K. M. Engle, T. Khotavivattana, M. O'Duill, K. Wheeelhouse, G. Rassias, M. Médebielle, V. Gouverneur, J. Am. Chem. Soc. 2013, 135, 2505; b) S. Choi, Y. J. Kim, S. M. Kim, J. W. Yang, S. W. Kim, E. J. Cho, Nat. Commun. 2014, 5, 4881; c) P. Yu, S.-C. Zheng, N.-Y. Yang, B. Tan, X.-Y. Liu, Angew. Chem. Int. Ed. 2015, 54, 4041; Angew. Chem. 2015, 127, 4113; d) N. J. W. Straathof, S. E. Cramer, V. Hessel, T. Noël, Angew. Chem. Int. Ed. 2016, 55, 15549; Angew. Chem. 2016, 128, 15778; e) G. H. Lonca, D. Y. Ong, T. M. H. Tran, C. Tejo, S. Chiba, F. Gagosz, Angew. Chem. Int. Ed. 2017, 56, 11440; Angew. Chem. 2017, 129, 11598; f) W. Zhang, Z. Zou, Y. Wang, Y. Wang, Y. Liang, Z. Wu, Y. Zheng, Y. Pan, Angew. Chem. Int. Ed. 2019, 58, 624; Angew. Chem. 2019, 131, 634.
- [20] A. I. Konovalov, A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2014, 136, 13410.

- [21] a) A. Bose, P. Mal, J. Org. Chem. 2015, 80, 11219; b) Q.-Y. Wu, G.-Z. Ao, F. Liu, Org. Chem. Front. 2018, 5, 2061.
- [22] For the preparation and characterization of AgCF₂CF₃ solution, see the Supporting Information.
- [23] For selected examples of pentafluoroethylation reactions, see:
 a) A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc. 2013, 135, 12584;
 b) L. I. Panferova, F. M. Miloserdov, A. Lishchynskyi, M. M. Belmonte, J. Benet-Buchholz, V. V. Grushin, Angew. Chem. Int. Ed. 2015, 54, 5218; Angew. Chem. 2015, 127, 5307;
 c) L. Li, C. Ni, Q. Xie, M. Hu, F. Wang, J. Hu, Angew. Chem. Int. Ed. 2017, 56, 9971; Angew. Chem. 2017, 129, 10103;
 d) M. Ohashi, N. Ishida, K. Ando, Y. Hashimoto, A. Shigaki, K. Kikushima, S. Ogoshi, Chem. Eur. J. 2018, 24, 9794.

Manuscript received: May 9, 2019 Accepted manuscript online: May 23, 2019 Version of record online: June 24, 2019