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ABSTRACT: A general catalytic method for asymmetric
C-alkylation of nitroalkanes using nickel catalysis is
described. This method enables the formation of highly
enantioenriched β-nitroamides from readily available α-
bromoamides using mild reaction conditions that are
compatible with a wide range of functional groups. When
combined with subsequent reactions, this method allows
access to highly enantioenriched products with nitrogen-
bearing fully substituted carbon centers.

Nitroalkanes are broadly useful building blocks in organic
synthesis.1 Not only can the nitro group be converted into

a range of other functional groups, but nitroalkanes also
participate in a variety ofC−Cbond-forming reactions, including
Michael, Henry, nitro-Mannich, and palladium-catalyzed
allylation and arylation reactions. However, despite this great
synthetic versatility, for many years the simple C-alkylation of
nitroalkanesa potentially important reaction for converting
simple nitroalkanes into more complex nitroalkanesremained
challenging due to the dominance of O-alkylation, which
ultimately yields aldehydes instead of the desired nitroalkane
products.2

Over the past several years, our group has begun to address this
gap by developing transitionmetal-catalyzed alkylation reactions
of nitroalkanes.3 By using a transitionmetal catalyst, wewere able
to change from the inherent two-electron chemistry of
nitroalkanes to single-electron manifolds, thus changing the
preference for C- vs O-alkylation. With these new protocols,
alkylation with a variety of alkyl halides, including aliphatic alkyl
halides, is now possible.
Despite these advances in the ability to control the site-

selectivity of the alkylation reactions, control of stereoselectivity
has remained elusive. This is particularly noteworthy because
asymmetric variants ofmany other C−Cbond-forming reactions
of nitroalkanes have been described, and those reactions now
constitute important ways to install nitrogen-containing stereo-
centers.4 The seeming inability to render nitroalkane alkylation
asymmetric stems not only from that fact that the previously
identified optimal ligands are not easily rendered chiral, butmore
significantly from the fact that all prior mechanistic data
suggested that the reactions are proceeding via a radical pathway
involving an outer-sphere C−C bond-forming step that does not
directly involve the metal catalyst or ligand.3a,c,d Thus, prior data
strongly suggested that asymmetric nitroalkane alkylation would
not be possible using current catalytic methods, and the

asymmetric alkylation of nitroalkanes has remained an open
challenge.
Recently, while exploring copper-catalyzed reactions, we

observed modest, ligand-dependent changes in diastereoselec-
tion in nitroalkane alkylation.5 Those experiments suggested a
role for the ligand in C−C bond formation, prompting us to
reevaluate an outer-sphere pathway and opening the possibility
of asymmetric induction. Herein, we report the nickel-catalyzed
asymmetric alkylation of nitroalkanes using α-bromoamides
(Scheme 1),6 which is the first example of an asymmetric

nitroalkane alkylation using an alkyl halide electrophile.We show
that alkylation of nitroalkanes with racemic α-bromoamides
leads to highly enantioselective formation of α-substituted, β-
nitroamides with good levels of diastereocontrol.7 We demon-
strate that these products can be utilized to prepare asymmetric
β-aminoamides with fully substituted β-carbons with out-
standing levels of enantioselectivity. Moreover, these observa-
tions also cast new light onto transition metal-catalyzed
nitroalkane alkylations and suggest a more complex mechanism
than previously understood.
Our investigation began with reaction of commercially

available racemic N-benzyl-2-bromo-N-phenylpropionamide
with 1-nitropropane to make β-nitroamide 1 (Table 1). Using
conditions similar to our prior nonstereocontrolled nickel-
catalyzed alkylation reactions (10mol%Ni(COD)2, slight excess
of NaOMe),3d we began to systematically investigate a variety of
chiral ligands. Although many classes of ligands provided either
no enantioinduction or yield of product, we were pleased to find
that use of commercially available bis(oxazoline) ligand 2
provided desired product 1 with a measurable 12% ee, albeit in
30% yield and no measurable diastereoselectivity (entry 1).
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Scheme 1. General Method for Asymmetric Nitroalkane
Alkylation
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Eventually we found that the C2 symmetric chiral 1,2-diamine 3
provided considerably higher levels of enantioselectivity (72%
ee) and good diastereoselectivity (92:8, favoring the syn-
isomer),8 but did not improve the yield of the reaction (entry
2). N,N′-Dimethylcyclohexane-1,2-diamine (4) gave slightly
lower dr and yield but providedbetter enantioselectivity (78%ee,
entry 3). However, increasing the size of the amino substituents
provided much higher yield, good diastereoselectivity, and
retained enantioselectivity (entry 4). Although increasing the
size of the aromatic groups with the use of meta-methyl groups
(ligand 6) did not provide substantially different results (entry
5), placing electron-withdrawingCF3 groups at the sameposition
(ligand 7) provided a substantial increase in enantioselectivity
and higher diastereoselectivity (entry 6). Several rounds of
additional optimization led us to find that the optimal
combination of enantioselectivity, diastereoselectivity, and
reactivity was achieved by using the NiCl2 complex of this
optimal ligand (complex 8), Et2Zn as an in situ reductant, and 0
°C as the reaction temperature (entry 7).5 These conditions
resulted in high enantioselectivity, good diastereoselectivity, and
outstanding yields.
With optimized conditions in hand, we investigated the scope

of the nitroalkane (Scheme 2). A variety of primary nitroalkanes
were subjected to the reaction using (±)-N-benzyl-2-bromo-N-
phenylpropionamide as the alkylating reagent. High ee was
observed for 1-nitropropane (1) as well as with a β-branched
nitroalkane (9). A variety of functionalized nitroalkanes,
including those with alkene, aryl, aryl ether, acetate, free alcohol,
ester, and unprotected and protected ketone groups, was all
alkylated with good to excellent ee (10−17). In all the above
cases, good to excellent levels of dr were also observed.
Nitromethane can also be alkylated albeit with low yield and ee
(18).
The scope with respect to the α-bromoamide is also broad

(Scheme 3). Good dr and high ee were observed for amides
possessing electron-rich, electron-poor, and sterically encum-
bered groups (19−21). α-Bromoamides possessing α-alkyl
substituents larger than methyl were tolerated well, albeit with

lower dr and ee (22, 23). Significantly, several amide backbones,
including indoline, morpholine, aryl-alkyl, and Weinreb amides,
were tolerated, and all resulted in products with high dr and ee.
These reactionsweremost effectivewhen thenitroalkane starting
material was β-branched (24−27), but substrates without β-
branching also proceeded smoothly (28−31). Amides bearing
tertiary bromides (32) and secondary nitroalkanes (33) could
also be utilized in the alkylation reaction. In both cases, lower
yields and ee were observed. However, these highly congested
products would be challenging to prepare by other methods.
As shown in Schemes 2 and 3, in most cases the asymmetric

nitroalkane alkylation exhibits good to excellent levels of
diastereoselectivity. In all cases, the major diastereomer was
formedwith higher enantioselectivity, but good enantioselection
was also observed for the minor isomer. In many cases, the
diastereomers can be easily separated by standard flash column
chromatography. In two cases (15 and 24), we were able to
determine the relative and absolute stereochemistry of one of the
diastereomers using X-ray crystallography. In both cases, the
(1R,2S)-syn-isomer proved to be themajor isomer using theR,R-
catalyst.5 Diagnostic 1H NMR signals supported this relative
configuration for the other entries as well.9

The ability to prepare enantioenriched β-nitroamides using
this method has distinct advantages over other methods for
construction of amides bearing β-nitrogen atoms (such as the
Mannich reaction).4h,10 Specifically, unlike Mannich products,
the acidity of the proton α to the nitrogen atom allows β-
nitroamides to be used in further synthetic transformations.11

These transformations lead to highly substituted products. For
example, use of the alkylation products as nucleophiles in C−C
bond-forming reactions leads to β-nitroamides with fully
substituted β-carbons (Scheme 4). In these reactions, the

Table 1. Discovery of the Catalytic System

entry catalyst additive yield of 1a dr syn/anti %eeb syn

1 Ni(COD)2/2 30 50:50 12
2 Ni(COD)2/3 27 92:08 72
3 Ni(COD)2/4 18 78:22 78
4 Ni(COD)2/5 80 82:18 79
5 Ni(COD)2/6 80 84:16 82
6 Ni(COD)2/7 82 85:15 88
7 8c Et2Zn 97 79:21 90

aDetermined via 1H NMR against internal standard. bDetermined
using chiral HPLC analysis. c0 °C.

Scheme 2. Scope of Nitroalkanes

a5 mol % 8, 1 mol % Et2Zn.
b25 °C.
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stereocenterα to the carbonyl controls facial selection, leading to
highly diastereoselective conjugate addition (top),11 trifluor-
omethylation (middle),12 and Tsuji−Trost allylation (bottom)
reactions,13 all without erosion of ee. Consistent with our earlier
studies,11,12 the syn-diastereomer is observed in all cases, and the
nitro groups of the products are readily reduced to the
corresponding amines (37−39).
Significantly, isolationof a single diastereomerof the alkylation

product is not required for use in these downstream reactions. As
shownat the topof Scheme4, the conjugate addition reaction can
be conducted either with a single isolated diastereomer or with
the mixture of diastereomers obtained from the nickel-catalyzed
reaction. In both cases, identical diastereoselectivity and nearly
identical enantiopurity of product are obtained. These results
indicate that the diastereomers observed in the alkylation
reaction are epimeric at the β-center and that the diastereomers
converge upon deprotonation of the nitroalkane in the
subsequent reactions.14 From a practical standpoint, this is
highly advantageouswhenutilizing the alkylationproducts in this
way.
Several mechanistic experiments were carried out to probe the

nature of the transformation. Consistent with our earlier
nonstereoselective nitroalkane alkylation reactions, these studies
indicate amechanism involving radical intermediates. First, when
the reaction was run in the presence of 1 equiv of TEMPO, a
known radical scavenger,15 no alkylation product 1 was formed
(Scheme 5, top). Second, cyclopropylcarbinyl rearrangement is
observed with substrate 40, resulting exclusively in ring-opened

product 41 (Scheme 5, middle).16 Finally, the enantiopurity of
the startingα-bromoamide does not affect the stereoselectivity of
the reaction; both enantiomers of 42 lead to identical dr and ee of
products, albeit with slightly different yields. Additionally, when
starting material was reisolated from reactions stopped at partial
conversion, no erosion of ee of the bromoamide was observed
(Scheme 5, bottom).5 This result indicates that activation of the
C−Br is irreversible.
Although further studies will be required to fully elucidate the

mechanism, at present we favor the NiI/NiIII catalytic cycle
shown in Scheme 6.17 Initial reduction of the Ni(II) precatalyst
by Et2Zn results in formation of a Ni(0) complex. Compro-
portionation with excess Ni(II) complex then results in a Ni(I)
catalyst.18 This pathwaywould explain the need for excess Ni(II)

Scheme 3. Scope of α-Bromoamides

a0 °C b1.1 equiv of KOtBu.

Scheme 4. Downstream Functionalization of Alkylated
Products

Scheme 5. Mechanistic Probes
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compared to Et2Zn. Simultaneously, exothermic deprotonation
of the acidic nitroalkane by the alkoxide base results in an
insoluble (or sparingly soluble) nitronate anion, which under-
goes anion exchangewith theNi(I) complex resulting in a soluble
Ni(I) nitronate. This electron-rich Ni(I) complex then reacts
with the alkyl bromide via a stepwise oxidative addition to form a
Ni(III) alkyl nitronate. Reductive elimination then provides the
observed product and regenerates the catalyst.5

In conclusion, the first Ni-catalyzed asymmetric C-alkylation
of nitroalkanes using an alkyl halide has been developed. This
method enables formation of highly enantioenriched β-nitro-
amide from readily available α-bromoamides usingmild reaction
conditions that are compatible with a wide range of functional
groups. Significantly, due to both the acidity of the β-proton and
the ability of the α stereocenter to control subsequent reactions,
these products can be easily manipulated to access a range of
highly substituted β-aminoamides, providing distinct advantages
over competing technologies. This study also demonstrates that
the mechanism of transition metal-catalyzed nitroalkane
alkylation reactions are more complex than earlier believed and
indicate that nickel-catalyzed nitroalkane alkylation occurs via
metal-mediated C−C bond formation. Current efforts are
directed at further expanding the scope of asymmetric nitro-
alkane alkylation reactions and better defining the mechanisms
by which they proceed.
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