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Introduction

(-)-Goniomitine (1)

Gonioma Malagasy

® |t is an important member of the Aspidosperma family of indole alkaloids,
and was isolated from the root bark of Gonioma Malagasy by Husson et al

in 1987,
® [t displays promising antiproliferative activity in several tumor cell lines;

® [t has a unique octahydroindolo[1,2-a][1,8]naphthyridine core together with

a tryptophol moiety.
Husson, H.-P. et al. Tetrahedron Lett. 1987, 28, 2123.

Waser, J. et al. Angew. Chem. Int. Ed. 2010, 49, 5767.




Introduction

Representative Aspidosperma
family monoterpenoid indole alkaloids

COzMe

(+)-1,2-dehydro
(-)-Goniomitine (1) aspidospermidine (2) (+)-aspidospermidine (3) (+)-vincadifformine (4)
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Retrosynthetic analysis
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The synthesis of 8
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The synthesis of 8
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The synthesis of 8
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The synthesis of (-)-Goniomitine




The synthesis of 14
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The synthesis of (-)-Goniomitine
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Buchwald-Hartwig Cross Coupling Reaction
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Zhu's iORC

(-)-goniomitine (1)
716 mg, 11 steps
27% overall yield
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Buchwald-Hartwig cross coupling reaction
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The synthesis of (-)-Goniomitine
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Zhu's IORC
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Formal synthesis of Aspidosperma family
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Summary

COzMe

(+)-1,2-dehydro

(-)-Goniomitine (1) aspidospermidine (2)  (+)-aspidospermidine (3) (+)-vincadifformine (4)
® Scalable total synthesis of (-)-goniomitine (1): 11 steps, 27% yield,;

® [ridium-catalyzed asymmetric hydrogenation;

® Johnson-Claisen rearrangement;

® |Integrated oxidation/deprotection/cyclization process;

® Formal synthesis of (+)-1,2-dehydroaspidospermidine (2), (+)-

aspidospermidine (3), and (+)-vincadifformine (4).




The first paragraph

Natural products constitute a main source for drug discovery. Because
most of the pharmacologically active natural products are optically pure
compounds, the development of enantioselective synthetic methods for
their synthesis, especially catalytic asymmetric synthetic methods for
scalable production, has been a long-term challenge for synthetic
chemists and the pharmaceutical industry. Monoterpene indole alkaloids
represent an important class of natural products that possess significant
biological activities, and they have drawn considerable attention from the
field of synthetic chemistry during the past years. However, due to their

high structural diversity and complexity, monoterpene indole alkaloids are

challenging targets for testing new synthetic strategies.




The first paragraph

(-)-Goniomitine (1) is an important member of the Aspidosperma family of
indole alkaloids, and was isolated from the root bark of Gonioma
Malagasy by Husson et al in 1987. The bioassay indicated that this
monoterpene indole alkaloid, which has a unique octahydroindolo[1,2-
a][1,8]naphthyridine core together with a tryptophol moiety, displays
promising antiproliferative activity in several tumor cell lines.
Consequently, a number of total syntheses of this molecule, including
enantioselective ones, have been reported. However, the scalable
enantioselective total synthesis of 1 or its enantiomer remains a difficult

issue.




The last paragraph

In conclusion, we have developed a scalable enantioselective total
synthesis of (-)-goniomitine (1) using an iridium-catalyzed asymmetric
hydrogenation of exocyclic enone ester to control the configuration, an
alkylation and a Johnson—Claisen rearrangement to construct the
substituted cyclopentene and the side chain of tryptophol moiety, and an
integrated oxidation/deprotection/cyclization process to synthesize the
tetracyclic ring. This concise and efficient asymmetric synthetic strategy
was also successfully applied to the formal synthesis of (+)-1,2-
dehydroaspidospermidine (2), (+)-aspidospermidine (3), and (+)-

vincadifformine (4).
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