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Transition Metal-Free [4+3]-Cycloaddition of ortho-Quinone Methides 

and Isomünchnones: Catalytic and Diastereoselective Assembly of Oxa-

bridged Oxazocine Scaffolds  

Heather Lam, Zafar Qureshi, Marcus Wegmann, and Mark Lautens* 

Abstract: Cycloadditions are powerful processes to synthesize complex 

polycyclic scaffolds. Herein, we disclose a [4+3]-cycloaddition between 

an in situ generated ortho-quinone methide and an isomünchnone to yield 

oxa-bridged oxazocine cores, generating N2 and H2O as the sole by-

product. Using only catalytic amounts of camphorsulfonic acid, it is 

possible to generate both reactive intermediates in one step, eliminating 

the need for rhodium catalysts generally employed for isomünchnone 

formation. Spectroscopic data and X-ray crystallography indicate the 

formation of the syn diastereomer, with the main side-product arising 

from a hydrate participating in a competing [4+2]-cycloaddition 

pathway. 

 Highly-functionalized polycyclic oxazocines are known 

to have a range of biologically relevant functions.[1] However, 

bridged oxazocines have not been well documented in the 

literature.[2] Herein, we report a facile method towards novel oxa-

bridged oxazocine scaffolds through the acid-catalyzed in situ 

formation of ortho-quinone methides (o-QM) and isomünchones. 

Although [4+2]-cycloadditions of o-QMs and [3+2]-cycloadditions 

of isomünchnones are well documented in the synthesis of common 

heterocycles, [4+3]-cycloadditions of o-QM and isomünchnones 

have yet to be explored.[3] We envisioned that with mild conditions, 

either a rhodium- or acid catalyzed formation of isomünchnone int-

1 from diazoimide 1 could occur alongside the acid-catalyzed 

formation of the o-QM int-2 generating only N2 and H2O as  by-

products. The reactive intermediates int-1 and int-2 would 

subsequently react in a [4+3]-cycloaddition to form a complex 

polycyclic scaffold (Scheme 1). 

 We commenced our studies by investigating the reactivity 

with a stable o-QM. Though the isomünchnones formed from 1a are 

not isolable, some electron-rich o-QMs such as 2a can be isolated as 

an orange solid at room temperature. As a proof of concept for the 

[4+3]-cycloaddition, we applied the standard Rh2(OAc)4 catalyzed 

diazo decomposition conditions to a mixture of 1a with a stable o-

QM 2a (Table 1). Under these conditions, the reaction proceeded to 

give the desired cycloadduct product 3a in 28% isolated yield (entry 

1). Using 5 mol% (+)-camphorsulfonic acid (CSA) allowed us to 

obtain a similar result with a slightly elevated yield of 3a (entry 2). 

In the absence of catalyst, 1a could be recovered near quantitatively, 

whilst 2a had mostly decomposed (entry 3). The relative 

stereochemistry of 3a was determined by X-ray crystallography, 

which indicated the syn diastereomer had formed, wherein the 

bridging oxygen atom is on the same face as the aryl group 

(Figure 1).[4]  

 
Scheme 1. General [4+3]-cycloaddition reaction between in situ generated 

isomünchnone with an ortho-quinone methide. 

 

Table 1: [4+3]-cycloaddition between 1a with a stable o-QM 2a.[a] 

 

Entry Catalyst x mol% 3a [%][b] 1a [%][b] 2a [%][b] 

1 Rh2(OAc)4 1 28 5 - 
2 (+)-CSA 5 37 - - 
3 none - - 99 24[c] 

[a] Reaction conditions: 1a (0.2 mmol, 1.0 equiv), 2a (0.2 mmol, 1.0 equiv), 
Rh2(OAc)4 (x mol%) or (+)-CSA (x mol%), PhH (5 mL), 20 h. [b] 1H NMR 
yields shown using 1,3,5-trimethoxybenzene as an internal standard. [c] 2a 
in solution forms dimers over time. 
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 It is known that the transition-metal catalyzed decomposition 

of diazo compounds generates a metal carbenoid, which can undergo 

diverse chemical reactions.[5] Specifically, reactions between metal 

carbenes and 2π-systems have been thoroughly studied, often serving 

as a facile method to access bridged polycyclic scaffolds through 

[3+2]-cycloadditions.[6] In the past two decades, Padwa and co-

workers have extensively explored the utility of in situ generated 

isomünchnones made by diazoimide decomposition through the 

formation of a rhodium-carbene species (Scheme 2a).[7] The 

neighboring carbonyl oxygen cyclizes onto the rhodium-carbene to 

form a five- or six-membered isomünchnone. The resulting 

isomünchnone often undergoes [3+2]-cycloadditions with 

dipolarophiles, in either an inter- or intramolecular fashion, to form 

complex polycyclic structures.  

There are also reactions between metal-carbenes generated 

from vinyldiazoacetates and 4π-systems, exemplified by the work of 

Davies and co-workers. They have applied [4+3]-cycloadditions to 

the synthesis of tropanes, and the total synthesis of (-)-5-epi-vibsanin 

E, (+)-barekoxide and (−)-barekol (Scheme 2b).[8]  

Though alkenes are the most commonly encountered 

dipolarophiles for isomünchnones, 4π-systems have yet to be 

explored including o-QMs. o-QMs are useful building blocks in 

organic synthesis, and can be made through various methods.[9] Since 

the diazo-decomposition reactions are generally performed at room 

or below-room temperature, we were interested in using mild 

conditions for the in situ generation of o-QMs. Schneider and 

Rueping demonstrated that chalcones could be synthesized from a 

[4+2]-cycloaddition between an o-QM and a 1,3-diketone.[10] 

Additionally, Schneider established that it is possible to react in 

situ-generated o-QM with oxonium ylides to synthesize highly 

functionalized chromans.[11] This sequence involved the phosphoric 

acid-catalyzed generation of the o-QM and the Rh-catalyzed 

decomposition of a diazoketone (Scheme 2c).  

With the large body of work pertaining to transition metal-

catalyzed decompositions of diazoalkanes, acid-catalyzed methods 

offer an inexpensive alternative.[12] Johnston and co-workers 

demonstrated that the decomposition of diazoalkanes can be acheived 

using Brønsted acids to yield similar products as their metal-

catalyzed counterparts. [13]  The full potential of this approach has yet 

to be delineated.  We now report that Brønsted acid-catalysis can 

serve as an alternate route to accessing the desired isomünchnones 

formed from diazoimides, without the need for rhodium catalysts. 

 

 

Table 2: Optimization of acid-catalyzed [4+3] cycloaddition between in situ 
generated isomünchnones with ortho-quinone methides.[a] 

 

Entry Cat.  x mol% 1a:2b solvent 3b[%][b] 3b’[%][b] 

1 (+)-CSA 5 1:1 PhH 60(58) 24 
2 A1 5 1:1 PhH 20(18) n.d. 
3 A2 5 1:1 PhH 35(31)[f] n.d. 
4 A3 5 1:1 PhH 40(38) [g] n.d. 
5 A4 5 1:1 PhH 15(12) [h] n.d. 
6 p-TsOH 5 1:1 PhH 45(41) n.d. 
7 MsOH 5 1:1 PhH 56(50)  n.d. 

8[c] none - 1:1 PhH n.r. n.r. 
9 (+)-CSA 5 2:1 PhH 69(64) 19 

10[d] (+)-CSA 5 2:1 PhH <5 0 
11[d] (+)-CSA 20 2:1 PhH 50 17 
12 (+)-CSA 20 2:1 PhH 67(60)  21 

13[e] (+)-CSA 20 2:1 1,2-DCE 74(78) 21 

[a] 1a, 2b, catalyst (x mol%) were added to a 2 dram vial equipped with a 
stir bar and dissolved in solvent, which was dried over 4Å MS (5 ml). The 
mixture was stirred for 10 h. 1,3,5-trimethoxybenzene was added as an 
internal standard for 1H NMR yield. [b] 1H NMR yields shown using 1,3,5-
trimethoxybenzene as an internal standard. Isolated yields in brackets. 
Racemic mixtures were obtained unless otherwise stated. [c] Starting 
materials isolated. [d] Powdered 4Å MS (5 mg) added. [e] Same result 
achieved with (±)-CSA or (-)-CSA. [f] 4% ee. [g] 14% ee. [h] 15% ee. n.r., no 
reaction; n.d., not determined.  

 

We tested conditions for the combination of 1a and 2b, a 

naphthyl-based o-QM precursor (Table 2). Aside from the desired 

product 3b, we also observed the formation of an unprecedented 

cycloadduct 3b’, a hydrate of the isomünchnone formed from a 

competing formal [4+2]-cycloaddition, in the presence of the H2O 

generated from the o-QM decomposition.[14] Though 

enantiomerically pure (+)-CSA was used, only racemic products 

were obtained. Attempts to transfer chirality from chiral phosphoric 

acids, A1-4, significantly lowered the yield of the desired product, 

but revealed that up to 15% enantiomeric excess could be achieved 

 

Scheme 2. Literature precedent for the [4+3]-cycloaddition  

 

 
Figure 2. 1H NMR monitoring of the reaction. Reaction conditions: 1a (1.0 

equiv), 2b (1.0 equiv), (+)-CSA (5 mol%) and 1,3,5-trimethoxybenzene 

(3 mg) was added to a 2 dram vial equipped with a stir bar, dissolved in 

CD2Cl2 (0.05 M) and stirred 1 min. 1 mL of the mixture was used for study. 
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using catalyst A4 (entries 2-5). Other sulfonic acids, such as p-TsOH 

and MsOH, did not improve the yield of the reaction (entries 6-7).   

To further our understanding of the decomposition pathway, a 1H 

NMR study under standard reaction conditions was undertaken 

(Table 2, entry 1, Figure 2). Our observations revealed that during 

the reaction, 1a was converted to the isomünchnone faster than 2b 

converted to the o-QM. Both products formed at the outset, with 3b 

forming faster than 3b’. Taking into account the relative rates of 

decomposition of the starting materials, we concluded that increasing 

the ratio of 1a to 2b would improve the overall yield of the reaction. 

Consequently, the use of two equivalents of 1a resulted in an increase 

in yield of 3b (entry 9). Our attempts to suppress the formation of 3b’ 

through the addition of 4Å MS lowered the yield of 3b even when 

higher loadings of catalyst were used (entry 8-12). The use of drying 

agents such as MgSO4 or Na2SO4 did not affect the yield of either 

product. After a screen of various solvents, we found that using 1,2-

DCE further improved the yield of 3b to 78% (entry 13).  

The substrate scope of the reaction was investigated with 

various diazoimides 1 and o-QM precursors 2 leading to products in 

generally good yields as single diastereomers (Scheme 2). Electron-

donating groups were well tolerated on the aryl ring furnishing 

products 3c–3e in good yields. Electron-withdrawing halogen groups 

or a CF3-group at the para- position were tolerated and gave 3f–3h. 

When the halogen was located at the meta- position, there was a 

significant decrease in yield (3i). ortho-Substituents inhibited the 

reaction. The aryl group could be replaced by a heteroaromatic ring 

such as thiophene to give 3j. However, when the aryl group was 

replaced by a pyridyl ring, the reaction failed. A seven-membered 

lactam-based diazoimide could be incorporated to afford 3k in 

excellent yields, the structure of which was confirmed by X-ray 

crystallography. Using an acyclic diazoimide, it was possible to 

obtain the desired cycloadduct 3l.  

We also explored the phenol-based o-QM precursors. The 

yields were generally lower than the naphthol analogues. This 

outcome may be due to faster decomposition of the o-QM precursor 

or the o-QM, in comparison to the diazoimide. The parent 

unsubstituted o-QM precursor reacted to afford a good yield of the 

desired cycloadduct 3m. Electron-donating and withdrawing groups 

were tolerated at the para position of the aryl ring and the quinone 

ring (3n–r, u) with decreased yields. Interestingly, placing an ortho-

methoxy group on the quinone ring gave good yields of the 

cycloadduct 3s. Using the seven-membered diazoimide, we could 

obtain 3t and was able to confirm the structure of the side-product 3t’ 

through X-ray crystallography (Figure 6).   

Based on the stereochemistry of the isolated diastereomer, 

possible transition states are shown in Figure 3. We cannot say if the 

reaction is stepwise or concerted. If the reaction is concerted, the 

product could arise from a compact transition state between the E-

o-QM and the isomünchnone or through an extended transition state 

between the Z-o-QM and the isomünchnone.  

 
Scheme 2. Substrate scope of the acid-catalyzed cycloaddition of diazomide 
1 and naphthol o-QM precursors 2. Reaction conditions: 0.4 mmol (2.0 equiv) 
diazoimide 1, 0.2 mmol (1.0 equiv) ortho-hydroxybenzhydryl alcohol 2, and 

(+)-CSA (5 mol%), DCE (4 mL), RT, 10h. Isolated yields shown. Yield of 
byproduct shown in brackets. [a] Heated to 40 °C. [b] Run at 0.2 M.  
 

 

 
Figure 3. Possible transition states between the reactive intermediates 

of [4+3]-cycloaddition for the formation of syn product 3b. 
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In summary, we have developed a reaction between two 

non-isolable reactive intermediates, o-QMs and isomünchnones, 

using a simple and economical acid catalyst under mild conditions to 

generate new oxa-bridged oxazocine scaffolds. The results of the 1H 

NMR study highlight the importance of the relative rates of 

decomposition of the starting materials. Both naphthol and phenol 

based o-QMs could participate in the reaction. The products are 

obtained as a single diastereomer and arise from a formal [4+3]-

cycloaddition with good yields. Efforts to understand the reaction 

mechanism using DFT calculations and studies toward the 

enantioselective version of the reaction are underway. 
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