Literature Report VIII

Enantioselective Intramolecular Ring Opening of Cyclobutanones

Reporter : Xiao-Yong Zhai

Checker: Zi-Biao Zhao

Date: 2019-01-14

Xu, L.-W. *et al. Angew. Chem. Int. Ed.* **2019**, *58*, 897. Cramer, N. *et al. Angew. Chem. Int. Ed.* **2014**, *53*, 9640.

2 Rh-Catalyzed Ring Opening of Cyclobutanones

3 Pd-Catalyzed Ring Opening of Cyclobutanones

CV of Li-Wen Xu

Education:

- 1994–1998 B.S., Anhui Normal University
- **1998–2004** Ph.D., LICP (Prof. Chun-Gu Xia)
- 2004–2006 Associate professor, LICP
- 2005–2006 Postdoc., CNRS UMR6011 (Prof. Jacques Mortier)
- **2007–2008** Research Fellow, NUS (Prof. Yixin Lu)
- **2008–2009** Postdoc., The University of Tokyo (Prof. Masakatsu Shibasaki)

Xu, Li-Wen

2006–Present Professor, Hangzhou Normal University

Research:

★ Organosilicon chemistry, asymmetric catalysis, and organic synthesis.

Catalytic Ring Opening of Cyclobutanones

Cramer, N. *et al. Chem. Rev.* **2015**, *115*, 9410. Murakami, M. *et al. Angew. Chem. Int. Ed.* **2012**, *51*, 2485. Cramer, N. *et al. Angew. Chem. Int. Ed.* **2014**, *53*, 9640.

Biologically Active Molecules

Balme, G. *et al.* Org. Lett. **2003**, *5*, 2055. Darnaedi, D. *et al. J. Nat. Prod.* **2004**, *67*, 932. Goll, J. M. *et al. J. Org. Chem.* **2005**, *70*, 1316. Murakami, M. *et al. Angew. Chem. Int. Ed.* **2012**, *51*, 2485.

Murakami, M. et al. J. Am. Chem. Soc. 2002, 124, 13976.

7

Cramer, N. et al. Angew. Chem. Int. Ed. 2014, 53, 3001.

Cramer, N. et al. Organometallics 2014, 33, 780.

Cramer, N. et al. Angew. Chem. Int. Ed. 2014, 53, 3001.

Ring Opening of Cyclobutanones with Silacyclobutane

Ring Opening of Cyclobutanones with ArB(pin)

Murakami, M. et al. Org. Lett. 2006, 8, 3379.

Rh-Catalyzed Ring Opening of Cyclobutanones

Carbonyl hydroacylation: First step (ketone C-C activation)

Cramer, N. et al. Angew. Chem. Int. Ed. 2014, 53, 9640.

Condition Optimization

Condition Optimization

Entry ^a	[Rh ^l]	L	Temp (°C)	Yield (%) ^b	Ee ^c
1	[Rh(COD)Cl] ₂	L1	110	8	86.4
2	[Rh(COD)Cl] ₂	L2	110	30	98.4
3	[Rh(COD)Cl] ₂	L3	110	45	99.0
4	[Rh(COD)Cl] ₂	L4	110	94(89)	98.8
5	[Rh(COD)Cl] ₂	L5	110	65	99.0
6	[Rh(COD)Cl] ₂	L6	110	15	99.6
7	[Rh(COD)OH] ₂	L4	110	0	ND
8	[Rh(COD) ₂]BF ₄	L4	110	25	ND
9	[Rh(COD)I] ₂	L4	110	81 (3)	0
10	[Rh(COD)Cl] ₂	L4	90	25	ND
11	[Rh(COD)Cl] ₂	L4	130	90 (4)	ND

^a Reaction conditions: **1** (0.05 mmol), [Rh^I] (5 mol%), L (6 mol%), 0.25 M in 1,4-Dioxane at 110 °C for 12 h. ^b Yield of **2a** determined by ¹H NMR spectroscopy. ^c Determined by chiral HPLC.

Substrate Scope

Substrate Scope

2i, 69% yield, 99% ee

- 2j, 86% yield, 99% ee
- 2k, 85% yield, 99% ee

21, 80% yield, 99% ee

2m, 81% yield, 99% ee

Proposed Mechanism

Pd-Catalyzed Ring Opening of Cyclobutanones

Enantioselective ring-opening/cyclopropanation and intermolecular capture

Xu, L.-W. et al. Angew. Chem. Int. Ed. 2019, 58, 897.

Condition Optimization

Me Br 1a	Pd ₂ (dba) ₃ (5 mol%) L (10 mol%) base (2.5 equiv) 1,4-Dioxane, 100 °C	R H 3a	Ph Ph Ph Q R^1 $P-N$ R^2 Ph Ph Ph Ph Ph Ph Ph Ph	L4 $R^1 = R^2 = Me$ L9 $R^1 = R^2 = Et$ L10 $R^1 = Me, R^2 = Bn$ L11 $R^1 = R^2 = Bn$ L12 $R^1 = Pr, R^2 = Bn$
Entry ^a	L	Base	Yield (%) ^b	ee ^c
1	XPhos	K ₂ CO ₃	9	-
2	XPhos	K ₂ CO ₃ +TsOH	49	-
3	XPhos	KHCO ₃	96	-
4	L4	KHCO ₃	94	32
5	L9	KHCO ₃	92	80
6	L10	KHCO ₃	96	78
7	L11	KHCO ₃	94	75
8	L12	KHCO ₃	91	93
9	L12	NaHCO ₃	92	93
10	L12	Na ₂ CO ₃	22	90
11	L12	AgCO ₃	16	93

^a Reaction conditions: **1** (0.2 mmol), Pd₂(dba)₃ (5 mol%), L (10 mol%), Base (2.5 equiv), 1,4-Dioxane (2 mL), 100 °C, 24 h.

Condition Optimization

Me Br	Pd ₂ (dba) ₃ (5 mol%) L12 (10 mol%) KHCO ₃ (2.5 equiv) 1,4-Dioxane, temp	Me H	Ph PhO Ph $PhPh Ph Ph Ph R^{1}Ph Ph R^{2}$
1a		3a	L12 R ¹ = [/] Pr, R ² = Bn

Entry ^a	Solvent	Temp (°C)	Yield (%) ^b	ee ^c
1	1,4-Dioxane	100	91	93
2	1,4-Dioxane	90	94	95
3	1,4-Dioxane	80	26	94
4	Toluene	90	70	92
5	CH ₃ CN	90	20	30
6	DCE	90	94	93
7	DMF	90	90	24
8	CHCI ₃	90	85	94
^a Reaction conditions: 1 (0.2 mmol), $Pd_2(dba)_3$ (5 mol%), L12 (10 mol%), KHCO ₃ (2.5 equiv),				

1,4-Dioxane (2 mL), 100 °C, 24 h.

Substrate Scope

Condition Optimization

Substrate Scope

Proposed Catalytic Cycle

Summary

Cramer, N. et al. Angew. Chem. Int. Ed. 2014, 53, 9640.

Xu, L.-W. et al. Angew. Chem. Int. Ed. 2019, 58, 897.

Quaternary carbon stereocenters, bonded by four different carbon substituents, are omnipresent in natural products and pharmaceuticals. Catalytic enantioselective creation of quaternary stereocenters is a long term challenge. In this respect, enantioselective desymmetrization of prochiral small-ring compounds has emerged as a powerful tool for creating quaternary carbon stereocenters. For example, enantioselective desymmetrization of prochiral cyclobutanones through Rh- and Ni catalyzed ring opening and ring expansion has been achieved by the groups of Murakami, Cramer, and Dong. In addition, Pd-catalyzed racemic ring-opening and ring-expansion reaction patterns of cyclobutanones were established by Murakami and co-workers with achiral catalyst systems.

Recently, Lu and co-workers reported a Pd-catalyzed asymmetric intramolecular α -arylation of prochiral cyclobutanones and aryl halides to form chiral cyclobutanones containing quaternary carbon stereocenters.

In conclusion, we have developed a tandem nucleophilic addition/ β carbon elimination reaction between cyclobutanones and intramolecular aryl halides, which generates σ -alkylpalladium species bearing β quaternary carbon stereocenters. When using boronic acids as external nucleophilic trapping reagents, an enantioselective domino ring-opening/ cross-coupling reaction was achieved for the construction of 1-indanones C3-quaternary stereocenters. In addition, bearing ring a opening/cyclopropanation sequence was realized in the absence of external nucleophiles, affording chiral cyclopropane-fused indanones in good yields and enantioselectivity.

Thanks for your attention